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Abstract

The field of atom interferometry has grown rapidly over the last two decades, open-

ing up a new direction in precision metrology. Atom interferometers have proven

to be valuable tools for measuring gravitational and inertial effects. In particular,

gravimeters, gradiometers, and gyroscopes based on atom interferometry have all

demonstrated high accuracies competitive with state-of-the-art commercial technol-

ogy. We describe here the development and operation of a compact mobile gravity

gradiometer using π/2−π−π/2 sequence with two-photon stimulated Raman transi-

tions in a dual atomic fountain setup for precision gravity gradient survey and other

gravity tests. Various noise sources have been identified and overcome, and a differ-

ential acceleration sensitivity of 4.2 × 10−9g/
√

Hz has been achieved over a 70 cm

baseline in the laboratory. The apparatus was then moved into a box-truck and a

gravity gradient survey was conducted near a 4 story-deep building, at an accuracy

of 7×10−9/s2 in gravity gradient with about three minutes integration at each survey

point. The survey results agreed with a theoretical model considering detailed floor

plan and building structure. In addition, technique to measure absolute gravity gra-

dient is discussed. Finally, a complete dynamic model of the π/2− π− π/2 sequence

was established, and potential algorithms to de-correlate apparatus platform noise

during survey based on this model were identified.
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Chapter 1

Introduction

1.1 Gravity Gradiometer

1.1.1 Gravity Gradient Measurement

Gravity gradiometer measures the change rate of gravity field over space. The gravity

gradient tensor is the derivative of gravitational acceleration g and is represented by

a three-by-three matrix:

T = ∇ · g =


∂xgx ∂ygx ∂zgx

∂xgy ∂ygy ∂zgy

∂xgz ∂ygz ∂zgz

 =


Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

 , (1.1)

where g is the derivative of the gravitational potential:

g(r) = −∇Φ(r). (1.2)

Due to the conservative nature of the field, Tij = Tji, and ∇2Φ = 0 which gives

Txx + Tyy + Tzz = 0. (1.3)

Therefore, only five components of the gravity gradient tensor in equation 1.1 are

independent (although sometimes all Txx, Tyy, and Tzz are shown for convenience).

1



2 CHAPTER 1. INTRODUCTION

Gravity gradient is often quoted in the unit of Eötvös, named after Baron Roland

von Eötvös, a Hungarian physicist who invented the first gradiometer in 1886 [1, 2].

The unit is usually written as E, and 1 E = 10−9/s2, or about 10−10g/m where g is

the acceleration of gravity at the surface of the Earth.

x

y

z

R

Figure 1.1: Coordinate system for defining gravity gradient of the Earth. R is the
radius of the Earth.

As an example, human body generates a gravity gradient of about 5 E at a meter

away; while the gravity gradient generated by the mass of the Earth, represented in

the coordinate system as shown in figure 1.1, is given by


Txx = Tyy = g/R ≈ 1500 E

Tzz = −2g/R ≈ −3000 E

Txy = Txz = Tyz = 0,

(1.4)

Note that gravity gradient is a scaler tensor, so, for example, even if z-axis is defined

in the reverse direction (pointing towards the center of the Earth), Tzz is still negative.
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L

Figure 1.2: Gravity gradient measurement by differential accelerometers.

A gravity gradient measurement is typically achieved by making two acceleration

measurements at two locations. For example, (see figure 1.2)

Tyy(y0) =
∂gy(y)

∂y

∣∣∣∣∣
y=y0

≈ gy(y0 + L/2)− gy(y0 − L/2)

L
. (1.5)

Here gy(y) denotes the component of gravity along the measurement axis and y0 is the

midpoint of where these two measurements are made. L is called the measurement

baseline. Some gradiometers, particularly our apparatus, are designed to measure

inline gravity gradient, as shown in equation 1.5. In other words, we measure the

change of gravity acceleration component along the line connecting two sensors. Cross

components such as Txy cannot be measured directly by inline measurement. It can

be shown that the general expression for an arbitrary inline measurement along an

axis in spherical coordinates defined by the polar angle φ and azimuthal angle θ is

given by

T inline
φ,θ = + (cos2 θ sin2 φ− cos2 φ) Txx

+ (sin2 θ sin2 φ− cos2 φ) Tyy

+ sin 2θ sin2 φ Txy

+ cos θ sin 2φ Txz

+ sin θ sin 2φ Tyz. (1.6)

With five inline gravity gradient measurements along five independent axes, one can
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derive all five independent components of the gravity gradient tensor.

1.1.2 Applications of Gravity Gradiometer

Due to equivalence principle, any platform acceleration (vibration) would be picked

up by accelerometer and be mistakenly interpreted as gravity signal. However, gra-

diometer utilizes two simultaneous acceleration measurements ideally referenced to

the same platform, and the platform vibration noise is therefore largely canceled when

two measurements are subtracted to extract the gravity gradient value. The gravity

gradient measurement can tolerate relatively high platform noise and is advantageous

in dynamic environment such as survey, yet it does provide valuable information of

the local gravity environment. Similarly, in precision scientific measurements, gravity

gradiometry lessenes the constraints on the level of knowledge of local gravitational

field which could be modified by tides, ocean loading, and local structures [3]. In this

section we describe a few applications of gravity gradiometer, followed by a summary

of current gradiometer technologies.

Gradiometer is very useful in detecting subsurface mass anomalies. Research has

shown that full tensor gradiometry (FTG) can be used to accurately locate anomaly

location and other properties [4, 5]. The first gradiometer invented by Eötvös in

1886 was improved, and combined with seismic methods, it became the standard

technique in mineral exploration, particularly oil [6] and diamond mine [7] discovery.

Similar methods can be used to detect water reservoir levels, underground tunnel, and

submarine structures [8]. The gravity gradient survey can be conducted even with

airborne instrument or satellite with reasonably controlled platform noise, making it

very convenient in remote area where land-based survey is difficult.

Navigation system also requires high precision gravity gradiometers, particularly

in the inertial navigation system (INS) [9]. The Global Positioning System (GPS)

provides an excellent navigation tool on the Earth, however there are a number of

environments where GPS is unavailable (such as urban and submarine area) [10],

where INS could provide a “fly-wheel” in those dead zones. The INS is extensively

used in aerospace and deep space navigation, and is based on the same principle
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as gravity measurements. Distinguishing the true acceleration of the motion from

the surrounding gravity signature is essential in precision inertial navigation systems.

Recently it has been shown that gravity anomalies could result in significant error in

inertial navigation, and an on-board gravity gradiometer could correct that error [11].

In addition, exact knowledge of the Earth gravitational field dynamically measured

on-board GPS satellite could provide orbital perturbation corrections and improve

GPS accuracy.

Besides practical applications, gravity gradiometer also draws great attention from

the scientific community. One of the least known fundamental constants is the grav-

itational constant G, and gravity gradiometer, such as torsion balance instrument, is

one of the best ways to measure G [12]. Since the invention of the first gravity gra-

diometer, the accuracy of the G measurement has been gradually improved [13, 14]. A

more precise value of G is beneficial for a number of related areas, such as geophysics

and string theory [15, 16, 17, 18, 19, 20]. Besides measuring G, Eötvös also pioneered

in comparing gravitational and inertial mass [2, 21], long before Einstein proposed

General Relativity. Recent progress in gravity theory, including Yukawa potential

terms, fifth force, and other “new physics”, proposed experiments that require very

high precision gravity gradiometers [22, 23].

Currently, the most successful commercial gradiometer is the UGM developed

by Bell and later acquired by Lockheed Martin. This Bell gradiometer is based

on mechanical accelerometers on a rotating disk, and has full-tensor gradiometry

capability. It demonstrated sensitivities on the order of 10 E/
√

Hz, and is designed

for airborne applications [24, 25, 8, 26]. The most sensitive gradiometer reported by

far is a superconducting gradiometer developed at Maryland University [27]. The

acceleration of the two test masses is detected using two superconducting quantum

interference devices (SQUIDs) and the short-term sensitivity of this device is 0.02

E/
√

Hz [28]. Another competing technology is based on falling corner cube and has

demonstrated sensitivity of 400 E/
√

Hz but very high precision at 10−9g level [29].
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1.2 Brief History of Atom Interferometry

It was first proposed by de Broglie in 1924 that massive particle has wave-like prop-

erties with a wavelength determined by the particle’s momentum [30]. First experi-

mental demonstration of the interference in atoms was performed by Ramsey in 1950

[31], and inertial effects in matter waves were first observed in 1975 in neutron in-

terferometer [32, 33]. It is not until recent two decades that atom interferometry

demonstrated extremely high sensitivities and excellent long-term stability. Today

many different matter wave interferometry experiments are taking the advantage of

the wave nature of atoms for precision measurements and fundamental research.

The key enabling technology for atom interferometry is the techniques of ma-

nipulating atoms using lasers. In the 1970s, several groups proposed slowing atoms

with optical forces [34, 35]. A breakthrough took place in 1985 when Chu and his

colleagues trapped neutral atoms with optical molasses and magneto-optical trap

(MOT) [36, 37]. Atomic physics then quickly became a hot area, and atom inter-

ferometry was demonstrated in 1991 using two-photon stimulated Raman transitions

[38, 39, 40, 41].

Since then, atom interferometer has been used for precision measurements of in-

ertial and gravitational effects, such as acceleration [42], gravity gradient [43, 44],

rotation rate [45, 46, 47, 48], fine structure constant [49, 50, 51], and gravitational

constant G [52, 53, 54]. Recently, potential experiments based on atom interferom-

etry were proposed in many scientific research areas such as spacetime fluctuations

[55, 56] and tests of general relativity, including tests of the equivalence principle

[57, 58], measurements of the curvature of space-time [59], and detection of gravita-

tional waves [60, 61, 62].

1.3 Overview

The format of this dissertation is as follows. Chapter 2 presents an overview of an

atomic fountain, the atomic structure, and operation principles. Chapter 3 reviews

some of the basics of atom-photon interactions, Raman transition, and calculation
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of interferometer differential phase. The experimental apparatus is described in de-

tail in chapter 4, including the control, electronics, laser, and sensor systems, as well

as the boxtruck which enables the gravity gradient survey. Chapter 5 reviews im-

portant technique in data analysis, including ellipse fitting, noise decorrelation, and

dedrifting. Some minor data processing algorithms are also documented. Chapter

6 discusses a complete model of the π/2 − π − π/2 atom interferometer sequence.

Chapter 7 continues to discuss major problems and noise sources we encountered and

how we overcome them. Some interesting effects we observed are also presented in

this chapter. The results of this work is presented in chapter 8, including gradiometer

performance characterization in the laboratory, gravity anomaly survey, and prelim-

inary motion sensitivity studies. Finally, chapter 9 concludes with a brief discussion

of possible future improvements that can potentially lead to an order of magnitude

more sensitive gravity gradient measurements.



Chapter 2

Atomic Fountain Overview

This chapter outlines the basic operation principles of an atomic fountain, including

the atomic structure and characteristics we utilize to cool and trap them with laser

and magnetic fields. Atomic fountain setup, atomic state preparation and detection

sequence will also be discussed, leaving out only the atom interferometry measurement

sequence to be discussed in detail in the next chapter.

2.1 Two-Level System

When an atom is driven close to resonance of a transition, it can often be approx-

imated as a simple two-level system. In this section, we discuss the dynamics of

two-level system without taking into account other effects such as spontaneous emis-

sion. This two-level system dynamics serve as the basis of atomic physics, and is used

extensively in the operation of our apparatus. It is therefore essential to introduce

these concepts and equations before discussing the atomic fountain.

The Hamiltonian for a two-level atom subject to an electric field E is

Ĥ = h̄ωe|e〉〈e|+ h̄ωg|g〉〈g| − d ·E, (2.1)

here h̄ωg and h̄ωe represent the internal energy levels of the ground and excited states,

and d represents the dipole moment of the atom. For a fixed driving frequency, the

8
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ω
ωeg

Figure 2.1: Energy diagram of a two-level system.

external (classical) electric field is given by

E = E0 cos(ωt+ φ). (2.2)

The Rabi frequency is defined as

Ωeg =
〈e|d ·E|g〉

h̄
(2.3)

which represents the frequency of Rabi oscillation between the two states separated

by resonance frequency ω = ωe − ωg = ωeg (see figure 2.1). The time-dependent

Schrodinger equation can be solved for this Hamiltonian by rotating wave approxi-

mation [50]. The evolution of the two state amplitudes is given by

ce(t0 + τ) = e−iδτ/2 {ce(t0) [cos(Ωrτ/2)− i cos θ sin(Ωrτ/2)]

+cg(t0)e−i(δt0+φ) [−i sin θ sin(Ωrτ/2)]
}

(2.4)

cg(t0 + τ) = eiδτ/2
{
ce(t0)ei(δt0+φ) [−i sin θ sin(Ωrτ/2)]

+cg(t0) [cos(Ωrτ/2) + i cos θ sin(Ωrτ/2)]} (2.5)

where

Ωr =
√
|Ωeg|2 + δ2 (2.6)

δ = ω − ωeg (2.7)
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sin θ = Ωeg/Ωr (2.8)

cos θ = −δ/Ωr. (2.9)

Note that the state amplitudes oscillate at a Rabi frequency Ωr, with transfer effi-

ciency dependent on δ. In particular, if atom is initially prepared in ground state

and excited by on-resonance light δ = 0, the probability of finding this atom in the

excited state after time τ is

Pe(τ) = |ce(τ)|2 =
1− cos(Ωegτ)

2
. (2.10)

When τ = π/Ωeg, the atom is transferred to excited state with a 100% probability,

commonly referred as a π-pulse. If τ is half of that, the pulse puts atom into an equal

superposition of the two states, and is referred as a π/2-pulse. In practice, often a

cloud of atoms is observed, and the on-resonance condition can seldom be satisfied by

all the atoms, and the Rabi frequency is often different for different parts of the cloud

due to spatial intensity profile of the laser beam. In this case, we usually call the

pulse that transfers the maximum number of atoms to the other state as a π-pulse.

This will be discussed in more detail in section 7.1.

Finally, it is also important to note that the final state amplitudes contains a

dependence on local optical phase φ. This phase is not important in single-pulse

Rabi oscillation case, but is very important in full interferometer sequence which

consists of many pulses separated in time.

2.2 Atomic Structure of Cesium

It is said that the periodic table for atomic physicists consists primarily of only the

left-most column (alkali-metal atoms). The heaviest stable element in that column,

Cesium (Cs), is used exclusively in our apparatus. A simplified energy level diagram

of Cs is shown in figure 2.2. The electron’s total angular momentum J = L+S where

L is electron’s orbital angular momentum and S is the electron’s spin. For ground

state and first excited state, L = 0, 1 respectively. The ground state has J = 1/2,
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and the first excited state has two fine splitting levels J = 1/2, 3/2, and the J = 1/2

level is not used in our apparatus.

F=4
F=3

6 P2 3/2

6 S1/2
2

F’=3
F’=2

F’=4
F’=5

I=7/2

ω   /2π = 9.193 GHz

151.3 MHz
202.5 MHz
251.4 MHz

λ 
= 

85
2.

4 
nm

HF

Figure 2.2: Cesium atom energy level structure.

The Cs atom has a nucleus spin I = 7/2. I interacts with J weakly, giving

the total atom angular momentum F = J + I. As a result, the ground state has

two hyperfine splitting levels, the 62S1/2 F = 3 and F = 4 levels, separated by

9.192631770 GHz exactly (the definition of second), and the first excited state 62P3/2

has four hyperfine splitting levels usually denoted by F ′ = 2, 3, 4, 5 respectively. The

optical transition from state 62S1/2 to state 62P3/2 can be driven by laser of wavelength

λ ≈ 852.3 nm.

Each hyperfine level is further split into (2F+1) Zeeman mF sub-levels in the pres-

ence of external magnetic field. The |F = 3,mF = 0〉 and |F = 4,mF = 0〉 sub-levels

are usually used in atom interferometry experiment such as atomic clocks because

their energy levels are second-order sensitive to external magnetic field [63].

2.3 Cold Atom Preparation

Standard atomic fountain technique has been used in our atom interferometry exper-

iment. This section outlines all the essential parts of cold atom sample preparation in

the atomic fountain, including cooling, trapping, and launching. Detailed explanation

can be found in [64].
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Laser cooling has became the “out-of-the-box” solution to cooling alkali-metal

atoms. The cycling cooling transition of Cs is |F = 4,mF = 4〉 → |F ′ = 5,m′F = 5〉.
Six laser beams with frequency slightly red-detuned (≈ 10 MHz) from this cooling

transition are used to slow down Cs atoms. Other transitions are a few hundreds

MHz away, so once an atom goes into this cooling transition, it is continuously cooled

down as they undergoes dozens of cycling cooling transitions every microsecond. This

process is referred as Doppler cooling. During this cooling process, a small portion of

the atoms can be excited into other energy levels, falling outside the cooling transition.

It is therefore necessary to include a weak repump light tuned at transition frequency

of |F = 3〉 → |F ′ = 4〉 during cooling process. While cooling laser slows down atoms,

it is unable to confine atoms spatially. A carefully designed magnetic field is typically

placed in additional to the cooling lasers to form a magnetic optic trap (MOT) to

trap cooled atoms at the center of intersection of all cooling laser beams.

About 109 Cs atoms are trapped in a ≈ 2 mm 1/e-radius cloud during MOT, and

they are launched upwards right after MOT by ramping the frequency of two vertical

cooling laser beams in about 2 ms. The downward beam at wavelength λ = 852.3 nm

is ramped towards red by f = 1.17 MHz, while the upward beam is ramped towards

blue by the same amount. As a result, if an atom is at rest in the lab frame, it has

more probability to absorb a directional photon from the upward beam than from the

downward beam, thus making the atom move faster upwards. The atom continues

to accelerate upwards until it reaches the desired launching speed of v = λf = 1

m/s upwards, at which speed the atom sees all six cooling laser beams at the same

frequency (due to Doppler shift). The process is similar to laser cooling, and one can

think that in the moving frame of 1 m/s upwards, atoms are cooled and trapped just

like in the lab frame before launching, thus a cloud of cool atoms moving at 1 m/s

upwards is prepared.

The Doppler cooling process slows atoms down to ∼ 100 µK or 0.1 m/s average

thermal velocity, and the sub-Doppler cooling is required to further cool atoms down

to a few µK so that the expansion of atom cloud is small enough during measurement

sequence for efficient detection. After launching atoms, laser beam intensities are

ramped down, and their detunings are ramped from the original ≈ 10 MHz to ≈ 60
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MHz. Few µK temperature is achieved after sub-Doppler cooling process, and average

thermal velocity is on the order of 1 cm/s. More detailed investigation on the atom

cloud temperature can be found later in section 7.3.

2.4 State Selection and Optical Pumping

After the cooling and launching sequence mentioned in the previous section, the

prepared cloud of ∼ 109 cold atoms are distributed across all mF levels in the |F = 4〉
ground state. As mentioned in section 2.2, two |mF = 0〉 ground levels are used in this

atom interferometry work. This section outlines the technique to select out atoms in

the |mF = 0〉 level and to improve the population in this level.

To select atoms in the |mF = 0〉 level, a microwave π-pulse tuned at resonance

frequency of transition |F = 3,mF = 0〉 → |F = 4,mF = 0〉 is used to transfer atoms

in level |F = 4,mF = 0〉 to level |F = 3,mF = 0〉. A magnetic field of ≈ 28 mG

is applied to break the degeneracy of different mF energy levels, so that with a

sufficiently long π-pulse length (with low microwave power) atoms in levels other than

|F = 4,mF = 0〉 are not addressed by this state-selection microwave pulse, and are

then heated up and kicked away by a downward 50 µs laser pulse tuned on resonance

frequency of optical transition |F = 4〉 → |F ′ = 5〉. A cloud of ∼ 108 cold atoms in

|F = 3,mF = 0〉 level is prepared by this sequence.

This state-selection sequence removes about 90% of the trap atoms because the

population is about evenly distributed across all 9 mF levels in |F = 4〉 after cool-

ing and trapping. The general trick of increasing population in |mF = 0〉 level is

to carefully design a optical and/or microwave pulse sequence to redistribute atoms

across all the mF levels while keeping |mF = 0〉 a “dark” level not responding to

this designed sequence. The commonly used optical pumping is one implemen-

tation of this sequence [65]. Briefly, π-polarized laser beam tuned on transition

|F = 4〉 → |F ′ = 4〉 is used to redistribute |F = 4〉 atoms across mF levels, and be-

cause transition |F = 4,mF = 0〉 π−→ |F ′ = 4,mF = 0〉 is forbidden, atoms falling

into |F = 4,mF = 0〉 level are not able to get out. At the same time, some atoms

spontaneously decay into |F = 3〉 state, and a repump light tuned on transition
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|F = 3〉 → |F ′ = 4〉 is also necessary during this process to pump those atoms back

to |F = 4〉 state. This optical pumping scheme is reported to get 95% of total atoms

into |F = 4,mF = 0〉 state, and has been tried in our apparatus to achieve about 50%

efficiency in selecting |mF = 0〉 atoms. However, this scheme requires the generation

of an additional optical frequency |F = 4〉 → |F ′ = 4〉, and very pure π-polarization

is also required to ensure the level |F = 4,mF = 0〉 is dark. So in our experiment, we

use a slightly different scheme to increase population in the |F = 4,mF = 0〉 level.

We generate a “microwave frequency comb” using frequency modulation with a

modulation index of m = 2.40 and a modulation frequency of 20 kHz, creating a fre-

quency comb with 20 kHz spacing between sidebands and nullified carrier frequency.

This 20 kHz matches the spacing in ∆mF = 0 microwave transition frequencies under

the ≈ 28 mG magnetic field applied. A 200 µs microwave pulse of such frequency

comb transfers atoms from |F = 4,mF = ±1,±2,±3〉 to the corresponding mF levels

in |F = 3〉 state (see figure 2.3), followed by a 10 µs |F = 3〉 → |F ′ = 4〉 repump

optical pulse. The repump pulse pumps most atoms back to |F = 4〉 state and the

spontaneous decay redistributes atoms across all mF levels. Throughout this process,

the |F = 4,mF = 0,±4〉 levels remain dark. This pulse sequence is repeated a few

times, resulting about 1/3 of the atoms in the |F = 4,mF = 0〉 level. This Zeeman-

state optical pumping (ZOP) enhancement is limited by accumulation of atoms in the

|F = 4,mF = ±4〉, and can potentially be improved by introducing a 70 kHz comb

in additional to the existing frequency comb. This ZOP sequence does not require

the generation of an additional optical frequency, but does require a stable exter-

nal magnetic field. If the apparatus is moved, external magnetic field change has to

be compensated by a magnetic field servo with a 3-axis field control, and that was

successfully implemented (see section 4.3).

2.5 Detection

After state selection process, a cloud of ∼ 108 Cs atoms in the |F = 3,mF = 0〉 state

enters an atomic interferometer sequence which typically lasts ≈ 170 ms and consists

of a few stimulated Raman transition pulses. After the interferometer sequence, which
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Figure 2.3: Diagram of the energy levels for the Zeeman-state optical pumping in
order to increase the population in the |mF = 0〉 level.

will be discussed in the next chapter, the inertial or gravity measurement information

is encoded in the population ratio of two ground states |F = 3〉 and |F = 4〉. There

are various ways of extracting this population ratio information [66]. The detection

sequence we use in our apparatus has been summarized in [67]. Briefly, atom cloud

is moving at ≈ 1 m/s downwards before detection, and a upward propagating laser

beam resonant with transition |F = 4〉 → |F ′ = 5〉 is turned on for ≈ 70 µs, which

pushes |F = 4〉 atoms upwards with a velocity of ≈ 1 m/s. Atom in superposition

of two states is projected into one state during this process, and this pulse is com-

monly referred as “separation pulse” or “projection pulse”. After separation pulse,

a repump beam tuned on transition |F = 3〉 → |F ′ = 4〉 is pulsed on for a few mil-

liseconds to pump the still-downwards-moving |F = 3〉 atoms to |F = 4〉 state. After

about 5 ms, two atom clouds are separated by about 12 mm, and the upper and lower

clouds represent the population of |F = 4〉 and |F = 3〉 states after interferometer se-

quence, although they are both in |F = 4〉 state now. A detection beam resonant

with transition |F = 4〉 → |F ′ = 5〉 is then pulsed on for 300 µs and the resulting

fluorescence from each spatially separated atom cloud is imaged onto separate detec-

tor, each collects 1.3% of the fluorescence or ∼ 20 photons per atom (see figure 2.4).

Each quadrant photocurrent output is independently integrated over this detection

time. Johnson and photodetector dark current noise are negligible. This detection
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sequence is advantageous in that it simultaneously detects two states, thus making it

insensitive to detection laser frequency and intensity noise.

(a)

F=3 atoms

F=4 atoms

Trap beams

Achromatic lenses

Quadrant photodiode

Separation beam and
Trap/Detection beams

16 mm

(b)

Figure 2.4: Schematic of the detection system.

The separation pulse heats up |F = 4〉 atoms, making the cloud size bigger upon

detection thus less efficiently detected. We account this effect by introducing a de-

tection efficiency parameter typically called “scaling” s in calculating the population

ratio:

r3/4 =
sV3

V4

, (2.11)

where V3 and V4 are the integrated photodetector voltages of |F = 3〉 and |F = 4〉
state cloud, respectively, and s is typically ≈ 0.85 in our apparatus. The more

commonly used way to present measurement result, though, is the “normalized atom

number”, or the fraction of population in |F = 3〉 state out of the total number of

atoms:

N3 =
sV3

sV3 + V4

. (2.12)
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This scaling s is experimentally measured by varying the population ratio using a

simple two-pulse microwave Ramsey fringe without changing the loading sequence

such that (sV3 +V4) is a constant so s can be determined by linear fitting. Figure 2.5

shows the spatial distribution of the atoms during the detection stage as a function

of such Ramsey sequence interferometer phase.

Interferometer phase [π/20 rad]

z
0 5 10 15 20

Figure 2.5: A CCD image of the detected atoms showing the change in the relative
populations between the |F = 3〉 and |F = 4〉 states as an interferometer fringe is
scanned.

To characterize the detection system performance and signal-to-noise ratio (SNR)

limit, atoms are launched, prepared and detected immediately after a short microwave

interferometer sequence. We define SNR following the convention in [68]. With very

similar detection sequence applied, the SNR is measured with different number of

atoms (N) loaded, and plotted in figure 2.6. An N1/2 scaling in this figure indicates

a shot-noise limited detection system, and SNR of 7800:1 per shot was observed [67],

and our apparatus performance is currently not limited by this detection system noise

due to other technical noise sources.
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Figure 2.6: SNR is measured as a function of atom number N by varying the trap
loading time. The measured N1/2 dependence suggests that the detection system is
limited by atom shot noise scaling. The solid line is an estimate of the quantum
projection noise limited SNR (2N1/2).



Chapter 3

Atom Interferometry

The overall picture of the operation of atomic fountain is introduced in the last chap-

ter. This chapter describes in detail the atomic processes involved in the actual atom

interferometry measurement sequence. We start with the theory of stimulated Raman

transition and interferometer pulse sequence, followed by the interferometer phase cal-

culation. Finally, gravity gradient measurements based on atom interferometer and

advanced atom interferometer sequences are discussed.

3.1 Stimulated Raman Transition

Two-photon stimulated Raman transitions [38] are used to coherently manipulate the

atomic wavepackets in our experiment. This stimulated Raman pulse couples two hy-

perfine ground levels with two optical frequencies, with a frequency difference roughly

equal to the hyperfine splitting, resulting in a large momentum recoil advantageous

to precision inertial measurements. Spontaneous emission is largely suppressed by

detuning the single optical frequency far away from the optical transition frequency.

A detailed discussion can be found in [50].

A energy level diagram of a three-level system is shown in figure 3.1. The two

hyperfine ground state |g〉 and |e〉 are coupled through an intermediate level |i〉 via

two optical transitions with angular frequencies ω1 and ω2. The combined electric

19
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∆
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Figure 3.1: Simplified energy diagram of a three-level system.

field in this case is

E = E1 cos(k1 · x− ω1t+ φ1) + E2 cos(k2 · x− ω2t+ φ2). (3.1)

The Hamiltonian for this three-level system is

Ĥ =
p2

2m
+ h̄ωg|g〉〈g|+ h̄ωe|e〉〈e|+ h̄ωi|i〉〈i| − d ·E. (3.2)

In the limit of large single photon detuning ∆O, the intermediate level may be adia-

batically eliminated. The eigenstates in the presence of optical fields are simply |g,p〉
and |e,p + h̄keff〉 indicating internal energy level and external momentum state are

coupled. The Hamiltonian in this representation is

Ĥ = h̄

 ΩAC
e

Ωeff

2
e−i(δ12t+φeff)

Ωeff

2
ei(δ12t+φeff) ΩAC

g

 (3.3)

where

ΩAC
e =

|Ωe|2

4∆
(3.4)
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ΩAC
g =

|Ωg|2

4∆
(3.5)

δ12 = (ω1 − ω2)−
(
ωeg +

p · keff

m
+
h̄|keff |2

2m

)
(3.6)

Ωg = −〈i|d ·E1|g〉
h̄

(3.7)

Ωe = −〈i|d ·E2|e〉
h̄

(3.8)

Ωeff =
Ω∗eΩg

2∆
eiφeff (3.9)

φeff = φ1 − φ2 (3.10)

keff = k1 − k2 (3.11)

The solution to the Hamiltonian is

c|e,p+h̄keff〉(t0 + τ) = e−i(ΩAC
e +ΩAC

g )τ/2e−iδ12τ/2{
c|e,p+h̄keff〉(t0) [cos(Ω′rτ/2)− i cos Θ sin(Ω′rτ/2)]

+c|g,p〉(t0)e−i(δ12t0+φeff) [−i sin Θ sin(Ω′rτ/2)]
}

c|g,p〉(t0 + τ) = e−i(ΩAC
e +ΩAC

g )τ/2eiδ12τ/2{
c|e,p+h̄keff〉(t0)ei(δ12t0+φeff) [−i sin Θ sin(Ω′rτ/2)]

+c|g,p〉(t0) [cos(Ω′rτ/2) + i cos Θ sin(Ω′rτ/2)]
}

(3.12)

where

Ω′r =
√
|Ωeff |2 + (δ12 − δAC)2 (3.13)

δAC = δAC
e − δAC

g (3.14)

sin Θ = Ωeff/Ω
′
r (3.15)

cos Θ = (δAC − δ12)/Ω′r. (3.16)

The differential ac Stark shift δAC is usually tuned to zero by adjusting the relative

intensities of the two optical frequencies. In the case of on-resonance condition (δ12 =

0), the atom undergoes a Rabi flop between two ground states as if it were a two-level
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state, with an effective Rabi frequency Ωeff . It is important to note that when an

atom transfers from one internal energy state to the other, its external momentum

state changes as well, due to the fact that during a two-photon stimulated Raman

transition, the atom absorbs a photon from one optical field and then stimulate emits

a photon into the other optical field. The momentum change due to this Raman

transition is h̄k1−h̄k2 = h̄keff . With two counterpropagating frequencies (k1 ≈ −k2),

the atom receives the maximumly possible momentum recoil of ≈ 2h̄k1 (For Cs atom,

this recoil corresponds to a velocity change of about vr = 7 mm/s.).

Generally speaking, the sensitivity of atom interferometer is proportional to keff .

The advantage of two-photon Raman transition is that it effectively couples two stable

ground states together but with a large keff . As a comparison, one could in principle

use microwave to directly couple two hyperfine splitting ground states together and

make atom interferometry measurement. However, for a microwave transition at

9.2 GHz for Cs, kmicrowave = 1.9 × 102 m−1, while the two-photon transition has a

keff = 1.47 × 107 m−1, about five orders of magnitude larger than the microwave

transition, resulting in a much better sensitivity in inertial measurements.

A precision measurement based on this two-photon transition requires very stable

keff , typically at sub-Hz level. For an optical frequency, this requirement of frequency

stabilization, although possible [69], is very difficult. Fortunately, stabilization of keff

does not require two individual optical frequencies (ω1 and ω2) to be very stable, but

only the difference between them (ω1 − ω2). In practice, frequency ω2 is generated

from ω1 by frequency shifting ω1 with a microwave frequency ≈ ωeg which is ultra

stable and locked to frequency standard such as Rubidium clock. There does exist a

certain requirement of this single frequency (ω1) stability, typically only at kHz level,

which is much easier to implement.

3.2 Interferometer Phase Shift

In atom interferometer, the direct observable from the measurement sequence is the

population ratio of two atomic states, which reflects the differential phase obtained

through two interfering paths. The desired information, such as acceleration, gravity,
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rotation rate, can be inferred from this differential phase. It is therefore essential to

determine the linkage between the differential phase shift and the physical quantities.

There are many different approaches to derive the interferometer phase output

terms. In this section, we will focus on the π/2 − π − π/2 sequence (see figure 3.2)

but our analysis is generic and can be applied to any interferometer sequence with

slight modifications.

path b

path a

Tt0 T

π/2
π

π/2

φ1a

φ1b

φ2b

φ2a

φ1

φ22

φ21

φ32

φ31

∆r
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Figure 3.2: Interferometer phase and recoil diagram of π/2− π − π/2 sequence.

3.2.1 Path Integral Approach

Path-Integral approach is the most commonly used method to derive atom interfer-

ometer phase output. Detailed explanation can be found in [70] and [50]. Generally

speaking, the differential phase between two interfering paths can be broken down

into three parts: the laser phase at each pulses, the atom path phase due to the free

evolution of the wavepackets, and the separation phase associated with the partial

overlap of the two wavepackets:

∆φtotal = ∆φlaser + ∆φpath + ∆φsep. (3.17)
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The laser interaction phase ∆φlaser is associated with the atom’s interactions with

the light. As pointed out in section 3.1, the interaction time, or Raman pulse length, is

orders of magnitude shorter than the interferometer sequence length. In the analysis

of atom interferometer, the short-pulse limit is often assumed so that the pulse length

is negligibly small. In this limit, the time evolution of the two atomic state amplitudes

during on-resonance Raman pulse is given by

cg(t+ τ) = cos(Ωeffτ/2)cg(t)− i sin(Ωeffτ/2)eiφce(t) (3.18)

ce(t+ τ) = −i sin(Ωeffτ/2)e−iφcg(t) + cos(Ωeffτ/2)ce(t) (3.19)

where φ is the local phase of the external electric field. For a π-pulse, τ = τπ = π/Ωeff

and

cg(t+ τπ) = −ieiφce(t) (3.20)

ce(t+ τπ) = −ie−iφcg(t) (3.21)

For a π/2-pulse, τ = τπ/2 and

cg(t+ τπ/2) =
1√
2

[cg(t)− ieiφce(t)] (3.22)

ce(t+ τπ/2) =
1√
2

[−ie−iφcg(t) + ce(t)] (3.23)

The π/2-pulse splits each state into an equal super-position of two states. When an

atom transfers from the ground state to the excited state, it picks up a laser phase

e−iφ; likewise, the atom picks up a laser phase of eiφ when it is driven from the excited

state to the ground state. Atom does not pick up laser phase when it does not undergo

a transition from one state to the other. The phase pickup rule is the same in π-pulse

case which transfers atom from one state to the other completely. There are five

laser phases involved in the full π/2 − π − π/2 interferometer sequence, and will be

discussed in detail later in this section.

The path phase ∆φpath is associated with the phase shift picked up by the atom

during its free propagation from r1 = r(t1) to r2 = r(t2) between Raman pulses, and
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can be calculated along its classical trajectory using its Lagrangian:

φpath =
1

h̄

∫ t2

t1
L[r(t), ṙ(t)]dt, (3.24)

where the Lagrangian is defined as L[r(t), ṙ(t)] = 1
2
mṙ2 − V (r).

The separation phase arises from the fact that the two wavepackets going through

two arms of the interferometer do not overlap perfectly. The wavepacket is often

assumed to be plane wave and the de Broglie waves from two wavepackets interfere

with a differential phase of

φsep =
p ·∆r

h̄
(3.25)

where p is momentum of atom and ∆r is the spatial separation of the two wavepack-

ets. A common question here is which velocity is supposed to be used in this calcula-

tion, because there are four different wavepackets at the end of atom interferometer

sequence and they all can have different velocities, in principle. This will be discussed

later in this section.

Here, the total differential phase of classical π/2− π− π/2 sequence is calculated

as an example. Figure 3.2 shows a general diagram of this sequence. Assume that

the atom starts in the ground state at time t = 0 such that cg(0) = 1 and ce(0) = 0.

Table 3.1 illustrates the evolution of phase along two interferometer arms.

The two arms combine and then interfere, so the final state amplitudes are given

by (with separation phase added)

cg(2T + 2τ) = −(e−iφ1a−iφ21−iφ2a+iφ31+iφg
sep + e−iφ1−iφ1b+iφ22−iφ2b)/2 (3.26)

ce(2T + 2τ) = −i(e−iφ1a−iφ21−iφ2a+iφe
sep − e−iφ1−iφ1b+iφ22−iφ2b−iφ32)/2 (3.27)

The final state populations therefore are calculated as

|cg(2T + 2τ)|2 = [1 + cos(φg)]/2 (3.28)

|ce(2T + 2τ)|2 = [1− cos(φe)]/2 (3.29)
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Time Arm a Arm b

0 cg = 1

τ/2 cg = 1/
√

2 ce = −ie−iφ1/
√

2

T + τ/2 cg = e−iφ1a/
√

2 ce = −ie−iφ1−iφ1b/
√

2

T + 3τ/2 ce = −ie−iφ1a−iφ21/
√

2 cg = −e−iφ1−iφ1b+iφ22/
√

2

2T + 3τ/2 ce = −ie−iφ1a−iφ21−iφ2a/
√

2 cg = −e−iφ1−iφ1b+iφ22−iφ2b/
√

2

2T + 2τ
ce = −ie−iφ1a−iφ21−iφ2a/2

cg = −e−iφ1a−iφ21−iφ2a+iφ31/2

cg = −e−iφ1−iφ1b+iφ22−iφ2b/2

ce = ie−iφ1−iφ1b+iφ22−iφ2b−iφ32/2

Table 3.1: Evolution of phase during a π/2 − π − π/2 interferometer sequence. The
atom starts in pure ground state and τ denotes π-pulse length and T is the time
between Raman pulses, commonly referred as interrogation time. Refer to figure 3.2
for explanation of the variables.

where

φg = −φ1a − φ21 − φ2a + φ31 + φ1 + φ1b − φ22 + φ2b + φgsep (3.30)

φe = −φ1a − φ21 − φ2a + φ32 + φ1 + φ1b − φ22 + φ2b + φesep (3.31)

We will prove these two phases are exactly the same, so that the total population

(|cg(2T + 2τ)|2 + |ce(2T + 2τ)|2) is always 1. Before going into detailed discussion, we

first note that this output phase can be categorized into three parts: 1) path phase

φpath = φ1b + φ2b − φ1a − φ2a (3.32)

as the path integral going through the loop of interferometer diagram; 2) separation

phase (φgsep and φesep); and 3) laser phase which two states get different quantities:

φglaser = φ1 − φ21 − φ22 + φ31 (3.33)

φelaser = φ1 − φ21 − φ22 + φ32 (3.34)

We now look at the separation phase in more detail. Suppose before the last

π/2-pulse, wavepacket in the path 2b is moving at velocity vg, and wavepacket in the
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path 2a is moving at velocity ve, and their separation is ∆r (pointing from path b

to path a). The last π/2 pulse has a wave vector of keff thus gives a recoil kick of

vr3 = h̄keff/m. Due to the separation of two wavepackets, φ31 and φ32 are not the

same and are related by

φ31 = φ32 + keff ·∆r. (3.35)

The velocities of the two wavepackets in ground state after the last π/2-pulse are

vg and (ve − vr3) (in the ideal case these two velocities are exactly the same). The

separation phase of the ground state is calculated using the average speed of these

two velocities (detailed treatment can be found in the next section)

φgsep =
m(vg + ve − vr3)

2
·∆r/h̄. (3.36)

Similarly

φesep =
m(ve + vg + vr3)

2
·∆r/h̄. (3.37)

It’s clear that the excited state and ground state have different laser phase and sepa-

ration phase contribution, but it’s easy to prove that the sum of these two is exactly

the same:

φgsep + φglaser = φesep + φelaser (3.38)

As a result, the total phase of the two states are exactly the same, as expected.

It is important to note that breaking down total phase into these three categories is

totally artificial, but is convenient for calculation and modeling. There is no physical

quantity that corresponds to the laser phase or path phase, and the only physically

observable quantity is the total phase. One can transform all the calculation into a

moving frame, and finds both the path phase and separation phase are different, thus

making the path phase and separation phase totally arbitrary and meaningless. The

sum of these two phases is still the same as in the lab frame, and special relativity

guarantees the laser phase is an invariant under Lorentz transformation. The total

phase, or the population ratio between two states, is thus also an invariant under

inertial frame transformation, as it should be.

Another interesting thought is that in fact we do not detect atoms right after the
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last π/2-pulse. The states continue to evolve after the last π/2-pulse. In non-ideal

condition, the final interferometer phase does depend on the detection time. However,

for all practical experiments in atom interferometry, the two wavepackets following

two arms of interferometer must be reasonably close in space and their classical ve-

locities must be very close too (if not, then recoil kicks during interferometer must

have introduced a large thermal-velocity-dependent phase and that would wash out

the interferometer contrast). This ensures the phase dependence on the detection

time is negligibly small, and therefore interferometry phase calculation often assumes

the detection is right after the interferometer sequence.

3.2.2 Wave Packet Approach

While the path integral approach introduced in the previous section is a powerful tool,

it is unable to predict the loss of interferometer contrast due to the partial overlap

of wavepackets at the end of interferometer. While partial overlap of wavepackets is

not present with the ideal interferometer sequence and condition, it is an important

topic in general and one of the important aspects in decorrelating platform noise

in dynamic environment. We here discuss a wavepacket approach to calculate the

interferometer phase output as well as the contrast reduction. Since the math in

this approach is more complicated, only the case of free space condition (no gravity)

will be discussed, but the results of contrast reduction is generic even with potential

energy added. Similar analysis can be found in [71] and [72].

We start with wave packet representation. After loading atoms, every atom can

be treated as a coherent Gaussian wave packet. We express Gaussian wave packet in

space:

ψ(x) =
1√√
πxa

exp

(
− x2

2x2
a

)
· exp

(
i
m

h̄
vc(x− x0)

)
, (3.39)

where x0 and vc are classical position and velocity of this atom, xa is the initial

coherent length on the order of hundreds of nanometers. Above can be expressed as
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a set of momentum eigenstates (normalization factor omitted):

ψ(x) =
∫ +∞

−∞
dv · exp

(
−(v − vc)2

2v2
a

)
· exp

(
i
m

h̄
v(x− x0)

)
, (3.40)

where

va =
h̄

mxa
. (3.41)

(Momentum spread and spatial spread are inversely proportional, or uncertainty prin-

ciple.) Each momentum eigenstate:

ψv(v, x, t = 0) = exp
(

i
m

h̄
v(x− x0)

)
(3.42)

is in fact a de Broglie plane wave. Because this is a free particle, its phase velocity is

v/2, so this eigenstate evolves as:

ψv(v, x, t) = exp
(

i
m

h̄
v
(
x− x0 −

v

2
t
))

. (3.43)

This is simply just the solution of Schrodinger equation to a free particle. Now we

can look at the wave packet evolution:

|ψ(x, t)|2 =

∣∣∣∣∣
∫ +∞

−∞
dv · exp

(
−(v − vc)2

2v2
a

)
ψv(v, x, t)

∣∣∣∣∣
2

(3.44)

∝ exp

(
−(x− x0 − vct)2

x2
a + v2

at
2

)
(3.45)

So at time t, the wave packet center is at (x0 +vct), as expected; and also wave packet

size becomes (x2
a + v2

at
2)1/2.

3.2.2.1 Wave Packet and Atom Cloud

To find ensemble behavior, we have to integrate over vc and x0. We assume they obey

the following Gaussian distribution:

fv(vc) ∝ exp

(
− v2

c

2v2
t

)
, (3.46)
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fx(x0) ∝ exp

(
−x

2
0

x2
t

)
, (3.47)

and the physical meaning of vt and xt will be interpreted later in this section.

As a result, the atom number distribution over space is:

N(x) ∝
∫ +∞

−∞
dx0fx(x0)

∫ +∞

−∞
dvcfv(vc) · exp

(
−(x− x0 − vct)2

x2
a + v2

at
2

)
(3.48)

∝ exp

(
− x2

r(t)2

)
, (3.49)

where

r(t)2 = x2
a + x2

t + (v2
a + 2v2

t )t
2. (3.50)

Classically, for collisionless expansion over a time t the 1/e-radius of the atom

cloud is (see, e.g. [73] page 59)

r(t)2 = r(0)2 + 2
kbTa
m

t2. (3.51)

Compared with our wave packet result, we have initial cloud size:

r0 = r(0) =
√
x2
a + x2

t . (3.52)

And to define classical temperature Ta, compare the second term in the r(t) for-

mula, we have:

Ta =
m

2kb
(v2
a + 2v2

t ), (3.53)

We define rms thermal velocity:

vrms =

√
kbTa
m

=
√
v2
t + v2

a/2. (3.54)

We’ll see later that our experiment cannot discriminate xa from xt, nor va from vt.

The interferometer contrast and phase only depends on r0 and vrms.
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3.2.2.2 Wave Packet Interacting with Raman Pulse

For a momentum eigenstate, the de Broglie wave phase is:

φ(v, x, t) =
m

h̄
v
(
x− x0 −

v

2
t
)
. (3.55)

Suppose at t = t0, it receives a π pulse, the spatially dependent laser phase φL(x) is

imprinted on the de Broglie wave:

φL(x) = keff(x− x0 − vct0) + φ1, (3.56)

where we reference laser phase to the wave packet center where laser phase is φ1.

The de Broglie wave phase right after pulse is (Note keff = mvr/h̄ where vr is recoil

velocity):

φ′(v, x, t0) = φ(v, x, t0) + φL(x) =
m

h̄
(v + vr)x+ C (3.57)

where constant C does not depend on v, x, t. The physical meaning of this expression

is that Raman pulse transforms the de Broglie phase spatial dependence to a new

wave number m(v + vr)/h̄, which is expected from the recoil kick. The de Broglie

wave phase then continues to evolve after the pulse:

φ′(v, x, t) = φ′(v, x, t0)− m

h̄

(v + vr)
2

2
(t− t0). (3.58)

We can verify how the new wave packet evolves:

|ψ′(x, t)|2 =

∣∣∣∣∣
∫ +∞

−∞
dv · exp

(
−(v − vc)2

2v2
a

)
eiφ′(v,x,t)

∣∣∣∣∣
2

(3.59)

∝ exp

(
−(x− x0 − vct− vr(t− t0))2

x2
a + v2

at
2

)
(3.60)

Wave packet center motion agrees with classical picture, and Raman pulse does not

change how the wave packet size increases.

We now proceed with two concrete examples of calculation of complete interfer-

ometer sequence. Results will be used in later sections.
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3.2.2.3 Example 1: δT -Scan

We prepare atoms at t = 0, and do first π/2-pulse at t = t0, second π-pulse at

t = t0 + T , third π/2-pulse at t = t0 + 2T + δT , and finally detect at t = tf .

This is a sequence we used to characterize interferometer SNR. we will see t0 and

tf eventually drop out from the expression. For simplicity, we do the calculation in

space, i.e., no potential energy. We first look at a single atom which starts as a wave

packet. A momentum eigenstate ψv(v, x, t = 0) evolves over time, and goes through

three Raman pulses. Using rules in the previous section, we can calculate the wave

function of this eigenstate at detection: ψv1(v, x, t = tf ) and ψv2(v, x, t = tf ) for two

paths respectively. The wave packets at detection from two paths are:

ψ1(x) =
∫ +∞

−∞
dv · exp

(
−(v − vc)2

2v2
a

)
ψv1(v, x, t = tf ) (3.61)

ψ2(x) =
∫ +∞

−∞
dv · exp

(
−(v − vc)2

2v2
a

)
ψv2(v, x, t = tf ) (3.62)

The probability of detecting this atom is:

Pa =
∫ +∞

−∞
dx|ψ1(x) + ψ2(x)|2 (3.63)

Despite the fact that the calculation is indeed complicated, the result is simple:

Pa =
1

2
+

1

2
exp

(
−v

2
r · δT 2

4x2
a

)
cos

(
φ1 − φ21 − φ22 + φ31 −

mv2
rδT

2h̄

)
, (3.64)

where 4 laser phases are defined at wave packet center, so:

φ1 − φ21 − φ22 + φ31 = keffδT (vc + vr/2) + φscan (3.65)

(φscan is some extra laser phase shift used for scanning fringe.). Plug in the laser

phase, we see Pa is a function of vc:

Pa(vc) =
1

2
+

1

2
exp

(
−v

2
r · δT 2

4x2
a

)
cos (φ′scan − keffvcδT ) (3.66)
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To get normalized atom number at this output port, we integrate over vc

P =
∫ +∞

−∞
dvcfv(vc) · Pa(vc) = (1 + χ cos(φscan))/2 (3.67)

where contrast:

χ = exp

(
− δT 2

(2xa/vr)2

)
exp

(
− δT 2

2/(keffvt)2

)
(3.68)

With a little math,

χ = exp

(
− δT 2

2/(keffvrms)2

)
(3.69)

This means, by measuring contrast envelope of δT -scan, we can not distinguish wave

packet momentum spread from classical thermal velocity. Only the overall velocity

distribution rms, or classical temperature, matters. This δT -scan provides a way to

measure atom cloud temperature (see section 7.3).

3.2.2.4 Example 2: Pitch Noise

Suppose Raman axis is x, and beams are steered by some small angle θ1, θ2, θ3 in the

xOy plane during three pulses. The wave packet calculation has to be done in two

dimensions x and y, but to the 1st order, the x part of the interferometer is nicely

closed and does not decrease contrast, so we only have to deal with the y part. In the

following equations, vc is wave packet center velocity along y axis. The probability of

detecting a single atom in the ground state is

Pa(vc, y0) =
1 + χ1 cosφ(vc, y0)

2
, (3.70)

where single atom contrast is:

χ1 = exp

(
−(θ1 − 2θ2 + θ3)2v2

r

4v2
a

)

· exp

(
− [t0(θ1 − 2θ2 + θ3) + 2T (−θ2 + θ3)]2v2

r

4x2
a

)
, (3.71)
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and single atom phase depends on vc and y0 (2nd order θ2
i terms ignored):

φ(vc, y0) = 2keffvc(θ3 − θ2)T + keff(y0 + vct0)(θ1 − 2θ2 + θ3) + φscan. (3.72)

By integrating Pa(vc, y0) over vc and y0, we get overall ensemble contrast χ:

χ = χ1 · exp

(
−(θ1 − 2θ2 + θ3)2k2

effx
2
t

4

)

· exp

(
− [t0(θ1 − 2θ2 + θ3) + 2T (−θ2 + θ3)]2k2

effv
2
t

2

)
(3.73)

With a little math...

χ = exp

(
−(θ1 − 2θ2 + θ3)2k2

effr
2
0

4

)

· exp

(
− [t0(θ1 − 2θ2 + θ3) + 2T (−θ2 + θ3)]2k2

effv
2
rms

2

)
. (3.74)

So in this pitch noise model, final contrast only depends on the initial cloud size

r0 and classical rms thermal velocity vrms. Interestingly, contrast depends on t0,

the time between the 1st Raman pulse and cooling (or the last incoherent process

event). This pitch noise contrast calculation is one of the foundations of platform

noise decorrelation model.

3.2.3 Acceleration Measurement

The analysis of the simplest atom interferometer sequence π/2− π − π/2 is outlined

above. We now proceed with concrete result. It can be shown that [70] in a uniform

gravity field g, this interferometer sequence gives a gravity-dependent phase, no mat-

ter what the initial spatial location or initial thermal velocity any particular atom

has:

φ = keff · gT 2, (3.75)
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where T is the interrogation time. The center π-pulse steers wavepackets back to-

gether and interfere, cancels the initial thermal velocity terms in phase. This is impor-

tant in that all the atoms in the ensemble coherently contribute to the acceleration-

dependent phase measurement, resulting in a significantly boosted signal-to-noise

ratio (SNR) without losing interference contrast.

L

Figure 3.3: Gravity Gradient Measurement

By simultaneously making two gravity measurements spatially separated by a

distance L (baseline, see figure 3.3), the gravity gradient along the Raman beam axis

can be derived:

Tyy(y0) ≈ gy(y0 + L/2)− gy(y0 − L/2)

L
. (3.76)

Here gy(y) denotes the component of gravity along Raman beam axis and y0 is the

midpoint of these two accelerometers. As mentioned in section 1.1.2, platform noise

is largely canceled in gravity gradient measurement, so gradiometer is therefore ad-

vantageous in dynamic environment such as survey.

Essentially, the atom accelerometer measures the relative motion between inertial

frame, which is defined by the atom de Broglie wave, and the lab frame, which is

defined by Raman beams referencing to the delivery optics mounted on the platform.

Depending on the actual scenario, the atom accelerometer can be used to measure

platform acceleration, or surrounding gravity, or a combination of both. When two

acceleration measurements are made simultaneously, the optical coupling by Raman

beams not only makes the atom gradiometer baseline easily extendable, but also

enables a large common-mode platform noise rejection.
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3.3 Raman Beam Path Asymmetry

As mentioned in section 3.1, although two-photon transition requires two independent

optical frequencies ω1 and ω2, only the frequency difference (ω1−ω2) is required to be

ultra stable to make a precision measurement. The individual optical frequency does

not need to be ultra stable. While it is true that the stability of frequency difference

must be at sub-Hz level, the individual optical frequency cannot be arbitrary. It

has to be in a certain range and relatively stable to ensure stable ac Stark shift and

other things. Besides that, Raman beam path asymmetry puts an even more restrict

constrains on the stabilities of ω1 and ω2.

We assume ω1 is generated from an optical-frequency-lock setup, and ω2 is gener-

ated from ω1 with a microwave frequency offset ωeg:

ω2 = ω1 − ωeg. (3.77)

Raman Frequency Source

Atoms
ω1 ω2 l2

l1

Figure 3.4: Raman beam path asymmetry for single sensor.

Here we assume the noise in ωeg is negligibly small. Figure 3.4 shows a generic

Raman beam scheme typically in atom interferometry experiment. Because the dis-

tances between atom and the frequency source of Raman beams are different, the

phases the atom sees from the two beams are not generated at exactly the same time.

From the diagram, we know that at time t1:

φ1(t1) =
∫ t1−l1/c

0
ω1(t)dt (3.78)

φ2(t1) =
∫ t1−l2/c

0
ω2(t)dt (3.79)
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The effective laser phase imprinted by the two-photon Raman transition is

φeff(t1) = φ1(t1)− φ2(t1) =
∫ t1−l1/c

t1−l2/c
ω1(t)dt+

∫ t1−l2/c

0
ωegdt

≈ ω1(t1)∆l/c+ φeg(t1 − l2/c), (3.80)

where ∆l = l2 − l1 is the path imbalance of two Raman beams, and φeg is the

microwave oscillator phase which is ultra stable and will be ignored in this analysis.

With the standard π/2− π − π/2 sequence, the ω1-dependent laser phase contri-

bution is (ignoring all other constant and relatively stable phase terms):

∆φ = (ω1(t1)− 2ω1(t1 + T ) + ω1(t1 + 2T ))∆l/c (3.81)

Assume noise characteristic in ω1(t) is primarily much shorter time-scale than T ,

and its standard deviation is δω, then

δ∆φ =
√

6δω∆l/c. (3.82)

The phase noise therefore scales with Raman beam asymmetry ∆l. This was illus-

trated in an ultra-short T experiment as shown in figure 3.5.

In practice, often two sensors make measurements simultaneously and the dif-

ferential phase between them is the desired measurement quantity. The simplified

Raman beam path diagram is shown in figure 3.6, and the ω1-dependent terms in the

differential phase is:

∆φ = 2(ω1(t1)− 2ω1(t1 + T ) + ω1(t1 + 2T ))L/c, (3.83)

and noise

δ∆φ = 2
√

6δωL/c. (3.84)

For our typical measurement, L ≈ 1 m, and δ∆φ is required to be around or below

1 mrad. This puts an upper limit on the noise of single optical frequency ω1 on the

order of 10 kHz. It is therefore essential to have a cavity-locked laser as the master

Raman light source to make our precision gravity gradient measurement.
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Figure 3.5: Ultra-short T illustrating Raman beam path asymmetry: a T = 70 µs
π/2−π−π/2 atom interferometer sequence is programmed, and the Raman phase is
switched between pulses such that the interferometer phase output is near the middle
of the fringe. Time record of two sensors are captured individually, and Sensor 4
clearly shows smaller noise (SNR of 60 in Sensor 4 compared to 24 in Sensor 1) because
two Raman beams reach Sensor 4 with more balanced path lengths. Experiment also
shows that when additional fibers are added in the Raman beam path such that Sensor
1 has more balanced Raman beam paths, Sensor 4 becomes noisier than Sensor 1.

3.4 Multi-Photon Sequence

Besides the simplest π/2 − π − π/2 pulse sequence, more advanced pulse sequences

can be used to measure rotation or enhance acceleration measurement sensitivity.

The π/2− π− π− π/2 sequence is often used for rotation rate sensing [45, 48]. Here

we discuss the “next-level-up” multi-photon sequence in acceleration measurements:

4h̄k sequence which is shown in figure 3.7.

For the 4h̄k sequence, time between the first two optical π-pulses and the last two

Raman Frequency Source
Sensor 2Sensor 1

ω1 ω2
L

Figure 3.6: Raman beam path asymmetry for dual sensor setup.
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Figure 3.7: Recoil diagram of 4h̄k sequence: π/2(microwave)−π−π−π(microwave)−
π−π−π/2(microwave). The center microwave pulse is used to reverse atomic states
so that the optical Raman pulse direction (keff) does not have to be reversed. In
this figure, blue line represents the ground state atoms path, while red represents
the excited state. Optical π-pulse efficiency is set to 90% so many non-coherent
atom states are produced outside the desired atom interferometer loop. All possible
interferences are represented by green traces after the last microwave π/2-pulse, and
different interference path has different inertial sensitivity.

must be the same (T ), and the time between the second and third optical π-pulses is

denoted as T ′. The phase output of this sequence is

φ = 2φ1 − 2φ2 − 2φ3 + 2φ4 = 2keffa(T 2 + TT ′) (3.85)

where acceleration a is measured along Raman beam axis (keff). In the limit of T ′ = 0,

this 4h̄k sequence is twice more sensitive to acceleration compared with the simplest

π/2 − π − π/2 (2h̄k) sequence with the same interrogation time T . In our atomic

fountain, it is fairly easy to reconfigure the pulses to do 4h̄k sequence, as shown in

figure 3.8. Time T and T ′ can be varied by launching the atoms at different velocities.
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top beam

bottom beam

L

Figure 3.8: Fountain setup of 4h̄k sequence.

One interesting result is that no matter how fast we launch the atoms (as long as it

reaches the top beam), the phase is always the same:

φ = 2keffa(T 2 + TT ′) = 4keffaL/g. (3.86)

It is therefore not advantageous to increase the launching velocity when reconfiguring

system from 2h̄k sequence to 4h̄k sequence, if optical alignment is not to be touched.



Chapter 4

Experimental Apparatus

Our atom interferometry apparatus involves tremendous amount of engineering ef-

forts. Previous generation of laboratory-size instrument (e.g. [52]) has been minia-

turized and fitted in a boxtruck. A high level system block diagram is shown in figure

4.1. This chapter describes some details of our apparatus, including the control, elec-

tronics, laser, and sensor systems, as well as the boxtruck which enables the gravity

gradient survey. Some parts that were thoroughly documented in [74] chapter 4 will

only be briefly outlined here.

V acuum  enclosu res

Sensor Head

Control
Software

DSP
F req . Genera tion
T im ing  C on tro l

Data Acquisition
Sensor Support

Laser System  
C on tro l + Op tics 

Ram an Laser 
System

Clim ate Control :
C h il le r and  A.C.

S ensor S ystem

Figure 4.1: A high level sensor system block diagram.
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4.1 Portable Laser System

The portable laser and electronics system in our apparatus are specifically designed to

work together. All these systems are fitted in several aluminium frames which measure

9 inches by 15 inches. These frames can be stacked with cooling layer inserted (see

figure 4.2). Among these frames are two optical frames, namely master laser frame

and amplifier laser frame.

Amplifier lasers

Amplifier electronics

Cooling

Master lasers

Master electronics

Cooling

Sensor electronics

DSP electronics

optical bundle

electrical bundle

Figure 4.2: A picture of the laser and control electronics frame stack assembly. These
frames deliver laser beams and electrical control signals to the sensors and also acquire
signals from the sensors.

The 4 independent optical beams used to trap, cool, launch, and detect the Cs

atoms are generated in the master laser frame using Yokogawa Distributed Bragg Re-

flector (DBR) and Eagleyard Distributed Feedback (DFR) diode lasers. The absolute

frequencies are referenced internally to Cs transitions using saturation spectroscopy

technique to derive an error signal for feedback to the diode laser [75]. The light

from the master frame is fed into the amplifier frame where it is then amplified up to

obtain the required power by a slave diode laser (SDL).

The narrow-linewidth light used to perform the stimulated Raman transitions

is obtained from an external cavity-stabilized diode laser using Pound-Drever-Hall

technique [76, 77]. Light from New Focus Vortex laser light is fed into a cavity with

Finesse ∼ 8000. The cavity error signal derived from the cavity reflection feeds back

into Vortex laser. The cavity length and absolute frequency are fixed by locking to

a Cs transition using similar technique as in the master laser frame (see figure 4.3).
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When everything is locked, the output Raman feed is a ∼ 10 kHz narrow-linewidth

and absolute-frequency stable light source. This light is then fed into the amplifier

laser system, to allow for power and timing control. Two beams are derived from this

Raman source and are fed into two Photline fiber modulators for further frequency

generation and control, and are then amplifiered again using two Eagleyard tapered

amplifiers in order to reach the desired power of Raman beams at ∼ 300 mW.

Cs lock filterCs Ref.
PD

Cavity lock
      filter

Cavity

PD
Vortex

piezo

Raman
 seed

Figure 4.3: Schematic of the Raman master system.

The overall laser generation, distribution and amplification chain is shown in figure

4.4. The control and frequency generation in this figure are discussed in the next

section.

4.2 Control and Electronics System

A Windows application is used to interface the control and acquisition hardware. It

configures the system parameters and timing sequence, with nanosecond stability,

and receives the data from the hardware after each acquisition and stores it to disk

for processing. The control system hardware relies on a programmable digital signal
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Figure 4.4: Block diagram of laser/frequency generation and distribution.
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processor (DSP) which interfaces with the Windows application, sets the frequency

and power desired at each point in the timing sequence. Programmable synthesizers

and direct digital synthesizers (DDSs) are used to generate the variable frequencies

required for microwave and optical sources (see figure 4.4). The system also manages

operating parameters of the laser diodes including current and temperature, as well as

all sensor parameters, including magnetic coils, Cs vapor and vacuum management,

as discussed in the next section.

4.3 Sensor Hardware

The sensor, where Cs atoms are loaded to make measurement, is comprised of a

Zerodur glass Cs vapor cell (see figure 4.5). Zerodur is perfectly machinable and

polishable, has almost zero thermal expansion coefficient, and has very low Helium

permeability, it is therefore perfect for optical access and stable atom interferometry

operation. This glass cell is held under ultra-high vacuum (UHV), along with the

delivery optics, Cs temperature control, magnetic coils for trapping, 3-axis bias mag-

netic coils, microwave horn, photo-detector, and 3-axis magnetometer. The hardware

is mounted in an aluminium chassis and surrounded by two layers of Mu-metal mag-

netic shielding. In-sensor magnetometers are used to servo bias magnetic coil currents

such that the magnetic field inside sensor head can be maintained at a constant value

even when the apparatus is moved to another location with different earth magnetic

field.

In order to reduce Raman beam steering effects, the sensor heads, Raman laser

delivery optics, and Raman beam path are entirely contained within a low-vacuum

(10−2 Torr) aluminium enclosure (see figure 4.6). This low-vacuum is maintained by

a standard rotary-vane roughing pump. Hundreds of electrical signals are fed into the

low-vacuum enclosure using a few multi-pin feedthroughs. Special procedure has been

developed to retrofit the standard single-mode fibers to feedthrough the low-vacuum

enclosure, without introducing air leakage or degrading optical performance. Two

Raman beams are delivered to sensors using a few mirrors and a corner cube (see

figure 4.6). Four critical mirrors and the corner cube have New Focus Picomotors
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Figure 4.5: A picture of the Zerodur ultra-high vacuum cell.

mounted so that both Raman beam alignments can be fully controlled by computer.

Raman 1
Raman 2

Corner
cube

Low vacuum enclosure

Sensor 1 Sensor 4

Vacuum feedthru

Ion pump

~ 60 cm

Figure 4.6: Schematic of the Raman laser delivery.

4.4 Mobile Laboratory in a Truck

The forementioned apparatus has been tested in the lab with convincing performance

(see section 8.1), and was then moved into a boxtruck in order to conduct mobile

gravity gradient measurement. All the supporting instruments are fitted inside truck,

mostly using rack-mounts. The ambient temperature inside the truck is controlled

with a wall-mount air conditioning unit and compressor, the latter being mounted on
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the outside.

Figure 4.7: A picture of the experimental apparatus: low-vacuum enclosures are lifted
to show the sensor heads. The bases of the low-vacuum enclosure are mounted down
to the actively-stabilized platform inside the boxtruck.

The sensor heads and low-vacuum enclosures are mounted on top of a custom

levelling platform (see figure 4.7) based on a 3-axis gimbal, which was developed by a

mechanical engineering team. This platform is actively stabilized with a low-frequency

servo loop using an LN250 inertial measurement unit (IMU) mounted on the platform.

Another LN250 is mounted on the truck floor to provide feedforward signal to the

platform control, particularly useful when truck is moving. This platform control

system performs very well such that the sensor system is able to identify gravity

gradient signature even when the truck is continuously moving [78].

The truck is equipped with an electric motor and a Differential Global Positioning

System (DGPS). The electric motor is capable of smoothly driving the truck with

a speed as low as 1 cm/s. DGPS provides centimeter-level accuracy of the truck

position and can potentially be used to guide the truck motion and even the steering

if a secondary DGPS is installed.
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Data Analysis

Precision measurement is often accompanied by a tremendous amount of work in

data analysis. In our particular apparatus, we have learned that optimal processing

algorithm can often squeeze out every last bit of instrument potential, and in certain

cases provide more than 30% boost in system performance. This chapter outlines

various data analysis methods and tools we used in the data processing, as well as

some issues we identified and solved.

5.1 Ellipse Fitting

Ellipse fitting algorithm was initially studied in computer graphics [79] and then ap-

plied to atom interferometry to extract differential phase between two atomic sensors

[80]. Suppose two sensors output signals (without noise):

 x = Cx + Ax sin(φc)

y = Cy + Ay sin(φc + φd)
(5.1)

where φc is the common phase (completely random in our apparatus) shared between

two sensors and φd is the differential phase that we are interested in. One can eliminate

unknowns Cx, Ax, Cy, Ay, φc and get:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (5.2)

48
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with B2−4AC < 0, which is a general form of ellipse equation. The differential phase

can be extracted from the coefficients:

φd = arccos

(
− B

2
√
AC

)
, (5.3)

with the convention that A and C are positive. With noise present in the data, the

least-square-fitting provides an approximate method to extract the differential phase

by minimizing the following quantity:

∑
i

(Ax2
i +Bxiyi + Cy2

i +Dxi + Eyi + F )2, (5.4)

where the sum goes through all the data points. To avoid trivial solution of all

coefficient being zero, condition B2 − 4AC = −1 is commonly used as an additional

constrain (for use with Lagrange multipliers) in the fitting. Likewise, condition F = 1

can also be used in the case of sufficiently low noise (i.e. eyes can clearly trace out

an ellipse). The advantage of using condition F = 1 is that the algebra is simpler for

implementation and results faster processing speed, particularly useful in real-time

applications.

The above algorithm is often referred as “unconstrained ellipse fitting”. In certain

cases, the offsets Cx, Cy and amplitudes Ax, Ay are known or predetermined by a clean

measurement. As a result, one might want to carry out a “contrained ellipse fitting”

by fixing the offsets and amplitudes. We first normalize the data in equation 5.1


xn =

x− Cx
Ax

= sin(φc)

yn =
y − Cy
Ay

= sin(φc + φd)
(5.5)

By eliminating φc, we have

y2
n − 2xnyn cosφd + x2

n − 1 + cos2 φd = 0. (5.6)

Similarly, we can find optimal φd using least-square-fitting by minimizing the following
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quantity: ∑
i

(y2
ni − 2xniyni cosφd + x2

ni − 1 + cos2 φd)
2. (5.7)

This constrained ellipse fitting algorithm was verified and has much less systematic er-

ror when φd is small, compared with unconstrained ellipse fitting. However it requires

preknowledge of offsets and amplitudes, making it suitable only for non-realtime pro-

cessing and certain data decorrelation cases. If not specified, “ellipse fitting” refers

to unconstrained ellipse fitting throughout this thesis.

5.1.1 Ellipse Fitting Noise and Systematic Error

In experiment, we typically characterize system noise by taking the standard deviation

of a time series of ellipse-fitting phases (per-ellipse phase noise). We sometimes want

to compare this per-ellipse phase noise with some characteristic per-shot noise such

as phase noise induced by Raman laser frequency instability. The conversion between

per-ellipse phase noise and per-shot phase noise is not as trivial as just a simple
√
N

factor (where N is the number of data points per ellipse). We approach this problem

by simple simulation without worrying about the strict statistical model. The result

with N = 20 is shown in figure 5.1. This conversion factor is slightly lower than
√
N , indicating that ellipse fitting does not reach the limit of statistical error. This

conversion factor is a function of per-shot noise σφ and the differential phase φd, but

when σφ is reasonably small, and φd is reasonably away from 0 and π, the conversion

factor is only a function of φd.

The conversion factor is proportional to
√
N , therefore measurement sensitivity,

or how fast one can integrate down the measurement noise, is independent of the N

used in the data analysis (see figure 5.2). However, in practice, long-term system drift

often kicks in as N increases. For our particular apparatus, sample characteristic can

be found in [74], section 5.2.1, and N = 20 is selected as the generic optimal value.

The other interesting aspect is the systematic error of ellipse fitting. Simulation

shows (see figure 5.3) that ellipse fitting has nonnegligible systematic error (i.e., biased

estimation) when phase noise is large. Also, we can see φd = π/2 is the desired

condition for ellipse fitting because it results negligible systematic error and minimum
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Figure 5.1: Ellipse fitting noise conversion factor from per-shot noise to per-ellipse
noise. The number of points per ellipse (N) is fixed at 20 in this simulation. This
conversion factor is slightly lower than the statistical limit (best possible

√
N), and is

a function of per-shot noise σφ and the differential phase φd, but when σφ is reasonably
small, and φd is reasonably away from 0 and π, the conversion factor is only a function
of φd.

per-ellipse phase noise.

The above analysis assumes phase-noise-only model. In practice, contrast noise

can play a role in the system noise too (see, e.g. section 7.1.1). Detailed study has

been done in comparison with Bayesian estimator algorithm [81].

5.1.2 Single Ellipse Fitting Residue

Phase noise can also be inferred from a single ellipse fitting residue, just like in the

simplest linear fitting. In the case of ellipse fitting, the conversion from ellipse fitting

residue to actual phase noise is not straightforward. One can certainly go through the
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Figure 5.2: Ellipse fitting noise integration: the top figure shows how the phase noise
per ellipse decreases proportionally as 1/

√
N , therefore the interferometer sensitivity

shown in the bottom figure is almost independent of N as long as N is reasonably large
(N > 15). Parameters in this simulation are: phase noise 7 mrad/shot, interrogation
time T = 85 ms, baseline L = 1.8 m, and repetition rate 2.5 Hz.
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Figure 5.3: Ellipse fitting systematic error: the systematic error is normalized to
the per-shot noise level to better illustrate the relationship. φd = π/2 is the desired
condition for a phase-noise-dominated ellipse fitting.

statistical model with complicated integrals, but practically an empirical simulation

is sufficient to give an order-of-magnitude estimation.

We first note that the mapping from per-shot phase noise σφ to ellipse fitting

residue r depends on the ellipse shape (Ax, Ay, φd) and the number of data points

per ellipse (N , in the discussion below, it is fixed at 20). It does not seem a wise

idea to re-run simulation for every particular ellipse shape. In order to get generic

results with minimum amount of simulation, we first study a normalized case in which

Ax = Ay = 1, Cx = Cy = 0, and F = 1. In this case, residue r only depends on φd

and σφ:

r = r(φd, σφ). (5.8)

This function r(φd, σφ) can be empirically determined by a simulation. For any given

φd and σφ, we first generate N = 20 random data points, assuming only phase noise
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is present:  xni = sin(φc)

yni = sin(φc + φd + σφX)
i = 1, 2, ..., N (5.9)

where φc is uniformly distributed in [0, 2π), and X is a random variable with standard

normal distribution (µX = 0, σX = 1). We use the condition F = 1 to fit an ellipse

with coefficients At, Bt, Ct, Dt, Et, and Ft = 1, and then find the residue for this

particular dataset:

r2
t =

1

N

N∑
i=1

(Atx
2
ni +Btxniyni + Cty

2
ni +Dtxni + Etyni + Ft)

2. (5.10)

We repeat the same procedure many times and find the average residue:

r2(φd, σφ) = 〈r2
t 〉. (5.11)

With a few points in φd and σφ space, we have a 2-D grid data of r = r(φd, σφ),

and 2-D interpolation can be used to find σφ for any given r and φd. We note here

that for reasonable phase noise (σφ < 100 mrad), r goes almost linearly with σφ, as

expected, thus function r can be reduced to a linear function:

r = r(φd, σφ) = k(φd)σφ. (5.12)

The phase-dependent linear coefficient k(φd) is shown in figure 5.4.

For general ellipse, we first normalize data as in equation 5.5, and plug these xn

and yn back into ellipse equation 5.2:

A(Axxn + Cx)
2 +B(Axxn + Cx)(Ayyn + Cy)

+ C(Ayyn + Cy)
2 +D(Axxn + Cx) + E(Ayyn + Cy) + F = 0.

(5.13)

We can expand this equation to nominal form, normalize all coefficients to the new

constant-term F ′:

F ′ = AC2
x +BCxCy + CC2

y +DCx + ECy + F, (5.14)
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Figure 5.4: Ellipse fitting residue conversion factor for a normalized ellipse equation
(equation 5.12). It converts a per-shot phase noise to average residue of a normalized
ellipse fitting.

and then we have the normalized form of ellipse with “normalized residue”:

r2
n(φd, σφ) =

1
N

∑N
i=1(Ax2

i +Bxiyi + Cy2
i +Dxi + Eyi + F )2

(AC2
x +BCxCy + CC2

y +DCx + ECy + F )2
. (5.15)

Using the normalized residue rn and fitted ellipse phase φd, we can infer σφ by the

normalized case simulation (equation 5.12). The actual 1σ-confidence interval of σφ

can be determined approximately by χ2 statistics with degree of freedom of N .

5.2 Phase and Contrast Noise Correction

In many precision measurement experiments, system has been thoroughly studied,

and most noise sources have been identified and characterized, although noise itself

is not controllable. Nevertheless, there are certain cases that noise can be measured

thus decorrelated. For example, in our atom interferometer, Raman laser is locked

to an external cavity, so laser frequency noise can be measured, in principle, by the
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cavity lock error signal. Generally speaking, our atom interferometer noise can be

categorized into two classes: phase noise (noise in φd in equation 5.1) and contrast

noise (noise in Ax and Ay). This section discusses the algorithm to back out the phase

noise and contrast noise when both of them are known by independent measurements.

We first modify equation 5.1 to include these two noise sources:

 xd = Cx + Axχ sin(φc)

yd = Cy + Ayχ sin(φc + φd + ∆φ)
(5.16)

where χ is the reduced relative contrast (χ < 1, same in two sensors for simplicity),

and ∆φ is phase noise. The aim of phase and contrast noise correction algorithm is

to transform original data point (xd, yd) onto the “correct” ellipse regardless of φc.

First of all, we can easily correct the contrast noise:

 xc0 = (xd − Cx)/χ+ Cx

yc0 = (yd − Cy)/χ+ Cy.
(5.17)

And phase correcting algorithm is shown below without derivation 1:


xc = xc0

yc = (yc0 − Cy) cos(∆φ)

+
sin(∆φ)

sin(φd + ∆φ)

(
Ay
Ax

(xc0 − Cx)− cos(φd + ∆φ)(yc0 − Cy)
)

+ Cy.

(5.18)

This algorithm is graphically shown in figure 5.5. An important application of

this contrast and phase error correction is platform motion decorrelation.

A proof-of-principle implementation of this algorithm is performed in a microwave

clock experiment. Non-common random phase noise is intentionally added to the

dual-fountain microwave clock by changing the bias magnetic field strength in only

one of the sensors, and the bias current change (although random) is simultaneously

recorded in order to decorrelate this phase noise. The |mF = 0〉 level of atoms used

in the clock have second-order sensitivity to this magnetic field change, thus the

1Sean Roy first worked out this algorithm.
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Figure 5.5: An example of phase and contrast noise correction. The clean data is
shown as blue points on the correct blue ellipse. With contrast and phase noise,
the data are shrinked and rotated onto the red ellipse. With correcting algorithm
the data points are shifted to green points back on the correct ellipse, thus giving
correct phase output by ellipse fitting. Note that the correcting algorithm does not
necessarily correct data point back to the corresponding original point due to the lack
of knowledge of common phase noise φc.

differential phase change is:

∆φ(∆B) = K(B0 + ∆B)2 −KB2
0 = k1∆I + k2(∆I)2, (5.19)

where we assume the bias field is proportional to the bias current applied: B ∝
I. Coefficients (k1, k2) can be fitted by minimizing the total distance of corrected

data points using the above model to the clean ellipse (which is acquired when no

phase noise is added). The fitted coefficients (k1, k2) are very close to what the

sensor geometry predicts, and this algorithm reduces the ellipse fitting noise from

39 mrad/ellipse rms to 1.1 mrad/ellipse (see figure 5.6), remarkably close to the

microwave clock performance limit 0.5 mrad/ellipse. The remaining noise may result

from the inhomogeneity of the magnetic field across the atom cloud.
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Figure 5.6: Phase correction in microwave clock: non-common phase noise is added
to the microwave clock by changing the bias magnetic field in one of the two sensors.
The bias current change is recorded simultaneously to decorrelate this phase noise by
post-processing. The decorrelation algorithm reduces the ellipse fitting noise from 39
mrad/ellipse rms to 1.1 mrad/ellipse.
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5.3 Direct Phase Extraction

The problem with ellipse fitting introduced in section 5.1 is that the least-square-

fitting does not guarantee a bias-free differential phase extraction. In this section we

discuss a simple bias-free differential phase extraction from the interferometer.

From normalized data in equation 5.5, we can eliminate φc to get φd by using

inverse functions (this algorithm is sometimes referred as “asin algorithm” due to the

involvement of arcsin function):

φd =

 | arcsin(y)− arcsin(x)|
arccos(cos(π − arcsin(x)− arcsin(y)))

(5.20)

Note special care has to be taken to ensure the result φd is in the desired range of

[0, π]. Eliminating φc can also be done using mostly algebra:

φd = arccos
(
xy ±

√
(1− x2)(1− y2)

)
(5.21)

Equations 5.20 and 5.21 are essentially the same result. The fact that there are

two solutions to a data point (x, y) is graphically shown in figure 5.7. There are many

different ways to select the correct solution of the two. For example, we can choose

the one closer to the conventional ellipse fitting result.

Experimental data xi, yi (i = 1, 2, ..., N) yields phase estimation φd(i) using the

above direct phase extraction. Phase noise is usually assumed to be normally dis-

tributed, so the optimal φd is what maximizes the likelihood function, or what min-

imizes
∑
i(φd − φd(i))

2. In other words, the bias-free estimation of φd is simply the

average of all φd(i). In contrast, ellipse fitting algorithm does not guarantee this max-

imum likelihood, thus resulting biased estimation. Simulation also verifies that this

direct phase extraction method yields the best possible integration of the phase error

(i.e., Allan deviation integrates as σφ/
√
N), when only phase noise is present. How-

ever when contrast noise is also involved, this direct phase extraction is no longer

an optimal way of extracting phase. In practice, those points near the middle of the

fringe can be weighted more to give a more accurate estimation of differential phase,
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Figure 5.7: Direct phase extraction: two possible ellipses are calculated by given one
data point on a predefined normalized ellipse (as in equation 5.5). The red ellipse is
the actual predefined ellipse which is the same throughout all 16 trials.

therefore a simple weighting function can be the reciprocal of the product of the two

arcsin() function slopes in equation 5.20 (the steeper the slope is, the better phase

sensitivity, thus requiring more weighting):

W (x, y) =

∣∣∣∣∣d[arcsin(y)]

dy
· d[arcsin(x)]

dx

∣∣∣∣∣
−1

=
√

(1− x2)(1− y2). (5.22)

A more complete and systematic framework, namely the Bayesian estimation [81],

has been established and preliminary theoretical study shows that it could reduce the

noise and systematic error associated with ellipse fitting. Nevertheless, both the

Bayesian estimation and the direct phase extraction method require preknowledge

of data offsets Cx, Cy and amplitudes Ax, Ay, and are computationally intensive to

implement, therefore it is rarely used in our experiment up to now.
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5.4 Sine Fitting

Ellipse fitting provides a very robust way to extract differential phase between two

atomic sensors, but in some cases, sine curve has to be fitted with single sensor data to

extract individual phase of that sensor. This is particularly important in microwave

clock study because common phase noise is usually very low and single sensor carries

important clock phase information. Suppose we have N data points (xn, yn) that

trace a sine curve roughly as

yn ≈ A sin(ωxn + φ) + C. (5.23)

One can find optimal fitting parameters (A, ω, φ, C) by minimizing the following quan-

tity:

P =
N∑
i=1

[yn − A sin(ωxn + φ)− C]2. (5.24)

Fast least-square fitting cannot be applied here due to the nature of transcendental

function, and this is a four parameter optimization problem which runs very slowly.

However, if ω is predetermined, then this optimization problem can be linearized:

P =
N∑
i=1

[yn − A cos(φ) sin(ωxn)− A sin(φ) cos(ωxn)− C]2. (5.25)

Here linear coefficients (A cos(φ), A sin(φ), C) can be solved by fast least-square fit-

ting, thus optimal (A, φ,C) can all be determined. One can then vary ω to find overall

optimal solution. This one-parameter optimization algorithm runs very fast.

5.5 Dedrifting and Allan Deviation

Due to various drifting sources, absolute phase in atom interferometer is often drifting.

The best method to average down a gravity gradient signal is to move the interfer-

ometer between the measurement spot and a reference spot in a regular interval. In

this case, two methods of dedrifting algorithm have been developed to take out the

absolute phase drifts.
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Suppose we make a series of phase measurements φi(i = 1, 2, 3, ...) and we move

interferometer every Y measurements. The phases measured at position A are:

yi = φi+2Y b(i−1)/(2Y )c (5.26)

and the phases measured at position B are:

xi = φi+Y+2Y b(i−1)/(2Y )c (5.27)

Without drift, the phase change between two positions can simply be averaged as

M = 〈xi〉 − 〈yi〉. The simplest direct subtraction method outputs gravity gradient

phase as

Mi = xi − yi (5.28)

but is susceptible to absolute phase drift.

If we assume the absolute phase drift is linear locally, one can model this drift

with

φn = α0 + α1n. (5.29)

And then  yi = xi − α1Y −Mi

yi+Y = xi + α1Y −Mi

=⇒Mi = xi −
yi + yi+Y

2
. (5.30)

One can also model drift as quadratic:

φn = α0 + α1n+ α2n
2 (5.31)

and this local curvature dedrifting method gives gravity gradient phase output as:

Mi =
−yi + 3xi − 3yi+Y + xi+Y

4
. (5.32)

These two dedrifting algorithms have been successfully applied in our experiment

to extract gravity gradient signal when fast thermal transient in absolute interferom-

eter phase is present. However, the problem of the above two dedrifting algorithms is
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that they underestimate short-term noise in Allan deviation. Suppose the system has

no drift and the noise is completely white with standard deviation of σ per phase mea-

surement. Without dedrifting, Allan variance of M simply goes as σ2
M(N) = 2σ2/N

where N is the average window size. One can prove the Allan variance in local linear

dedrifting algorithm is

σ2
M(N) =



2σ2

N

3

4
N ≤ Y/2

2σ2

N

(
1

2
+

Y

8N

)
Y/2 ≤ N ≤ Y

2σ2

N

(
1− 3Y

8N

)
Y ≤ N

(5.33)

Local curvature dedrifting algorithm gives Allan variance as:

σ2
M(N) =



2σ2

N

5

8
N ≤ Y/2

2σ2

N

(
1

4
+

3Y

16N

)
Y/2 ≤ N ≤ Y

2σ2

N

(
1− 9Y

16N

)
Y ≤ N

(5.34)

Apparently, local linear dedrifting underestimates short-term Allan variance by 25%,

while local curvature dedrifting by 37.5%. However, both of them give correct esti-

mation of long-term Allan variance. Figure 5.8 shows the short-term and long-term

behavior of Allan deviation of different algorithms.
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Figure 5.8: Allan deviation of dedrifted signal: different dedrifting algorithm has
very different behavior at short-term end, confirmed by theory. Parameters in this
simulation are: differential phase noise 2 mrad/ellipse, and sampling rate 9 sec/ellipse.

5.6 Derivative and Differential Measurement

We measure gravity gradient by the difference of signals from two sensors separated

by a distance L called baseline:

Tyy(y0) ≈ gy(y0 + L/2)− gy(y0 − L/2)

L
. (5.35)

This, basically, is to approximate a derivative quantity measurement with a differen-

tial method, and is accurate only up to the first order (i.e., when Tyy(y) is linear). In

practice, a post-processing algorithm can correct second-order error by using adjacent

measurements, and is outlined below.
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Suppose we make three measurements at location y = y0 − yL, y0, y0 + yR:



gy(y0 − yL + L/2)− gy(y0 − yL − L/2)

L
= T0 − TL

gy(y0 + L/2)− gy(y0 − L/2)

L
= T0

gy(y0 + yR + L/2)− gy(y0 − yR − L/2)

L
= T0 + TR

(5.36)

We assume quadratic tread of Tyy(y) near the location y = y0, or:

gy(y) = g0 + g1(y − y0) + g2(y − y0)2 + g3(y − y0)3. (5.37)

Here g0 is the background gravity which does not affect gravity gradient Tyy(y), so

with three unknowns and three equations in 5.36, we can solve:

Tyy(y0) =
dgy(y)

dy

∣∣∣∣∣
y=y0

= g1 = T0 +
L2(TLyR − TRyL)

12yLyR(yL + yR)
, (5.38)

where the second term is the correction term, which is on the order of 10 E, same order

of magnitude as our measurement error. This algorithm is graphically shown in figure

5.9, and was used in data processing of our gravity gradient survey. In principle, more

sophisticated correcting algorithm can be developed if the measurements are taken

nearly continuously.
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in this simulation (L = 4 m) to clearly show the correcting algorithm. This correction
is very effective particularly near the peak or valley of the curve.



Chapter 6

Error Model

The fact that atom interferometer runs on the surface of the Earth which constantly

rotates complicates the analysis. A complete model of atom interferometer sequence

has to either use the Earth frame, in which case special care has to be taken because

this is not an inertial frame, or use the inertial frame, in which case all the coordinates

have to be carefully converted to and from lab (Earth) frame. Details of the Earth

frame analysis can be found in [70]. In this section, we discuss a complete error model

of the π/2−π−π/2 sequence. The analysis can be extended to general interferometer

sequence, although the math becomes considerably more complicated when additional

pulses are added.

6.1 Analysis in the Earth Frame

We first model the atom interferometer in the Earth frame. In the geocentric reference

frame fixed to the surface of the Earth (see figure 6.1), the Lagrangian can be written

as

L(r,v) = m

(
v2

2
+ g · r +

1

2
riTijrj + Ω · ((r + R)× v) +

1

2
(Ω× (r + R)]2)

)
,

(6.1)

where m is the atomic mass, R is Earth radius vector from the center of Earth to

the center of apparatus (origin of the coordinate system in figure 6.1), vector r is the

67
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Ω

Figure 6.1: Earth frame coordinate system for the calculations. The z-axis is chosen
to point away from the Earth center and the y-axis is along Raman axis connecting
two sensors. Note that y-axis is not necessarily north-south.

displacement of the atom in the coordinate system, Ω is the Earth angular velocity

vector, g is acceleration due to local gravity, and Tij is the gravity gradient tensor. We

first evaluate the classical trajectories of atoms according to the classical equations

of motion:
∂2r

∂t2
= g − 2 Ω× ∂r

∂t
−Ω× (Ω× (r + R)). (6.2)

Using parameterized initial conditions of r = r0, and ∂r
∂t

= v0, we can obtain the

general analytic expressions of the trajectories by solving the differential equation

in Taylor expansion form. Terms up to the sixth order expansion in t are retained

in the calculation to ensure practically maximum accuracy of the solution. The

interferometer is subdivided into paths corresponding to the classical trajectories

associated with wavepacket propagation between the interferometer optical pulses.

The initial conditions for each path segment were determined from the final position
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and velocity of the previous trajectory segment and the velocity recoil induced by the

subsequent optical pulse.

The calculation of interferometer phase just follows the theory introduced in sec-

tion 3.2. Briefly, the interferometer phase breaks down into three categories: laser

phase is evaluated at the time of optical pulse, path phase is evaluated using full

Lagrangian along classical trajectory, and separation phase is evaluated using the

final separation and the average velocity of the wavepackets. Terms higher than the

fifth order of t can be ignored in the intermediate steps to reduce the complexity of

computation.

6.1.1 Symbols Used in the Model

We now introduce a concrete set of generic symbols used in our model. Refer to figure

3.2 for recoil diagram. Interferometer sequence is: launching at t = 0, 1st π/2-pulse

at t = t0, 2nd π-pulse at t = t0 + T , 3rd π/2-pulse at t = t0 + 2T , and finally

detection at t = t0 + 2T + td. The fact of td 6= 0 adds another layer of complexity

and as pointed out in section 3.2, setting td = 0 is sufficiently accurate in all practical

experiment modeling, so here we assume the detection is right after the 3rd pulse.

The interferometer phases are as follows:

φpath = φ1b + φ2b − φ1a − φ2a, (6.3)

φlaser = φ1 − φ21 − φ22 + φ31, (6.4)

φsep =
m

h̄

v3a(t0 + 2T ) + v2b(t0 + 2T )

2
· (r2a(t0 + 2T )− r2b(t0 + 2T )), (6.5)

where v3a(t0+2T ) represents the velocity of the wavepacket from path 2a at detection,

which is v2a(t0 + 2T ) plus the recoil kick added by the 3rd π/2-pulse. For a generic

model, we assume atom initial conditions are:

r0 = (rix, riy, riz), (6.6)

v0 = (vix, viy, viz). (6.7)
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These are initial conditions for a particular atom, and large part of that are from

initial spatial spread of atom cloud and thermal velocities. We also denote the initial

mean position and mean velocity of the atom cloud as:

r∗0 = (r∗ix, r
∗
iy, r

∗
iz), (6.8)

v∗0 = (v∗ix, v
∗
iy, v

∗
iz), (6.9)

and those primarily depends on platform noise during launching. We will see in

the following section that r0 and v0 are used in individual interferometer contrast

calculation, and once that is done, the interferometer phase noise only depends on r∗0

and v∗0.

The Raman beam wave vector is ideally along y-axis but can have jitter and non-

ideal alignment. We assume Raman beam wavevectors at the time of three pulses

are:

kj = (kjx, keff + kjy, kjz), (6.10)

where j = 1, 2, 3 representing three pulses. Here keff is the magnitude of the wavevec-

tor: |kj| = keff , so
kjy
keff

= −1

2

(
k2
jx

k2
eff

+
k2
jz

k2
eff

)
, (6.11)

so kjy is second-order term in angular jitter, as expected. Sometimes we may also

want to express Raman beam wavevector in terms of platform angular jitter:

kjx = −keffθjz, (6.12)

kjz = keffθjx, (6.13)

where j = 1, 2, 3. Here θjx represents rotation around x-axis (pitch) while θjz is yaw

rotation. Note that roll angular jitter θjy does not change Raman beam direction

thus is not important here. Nevertheless, θjy is important in calculating atom cloud

initial condition and Raman window wedge effects.

The earth rotation:

Ω = (ωx, ωy, ωz), (6.14)
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where ωx represents rotation rate around x-axis (pitch), ωy is roll rotation rate, and

ωz is yaw rotation rate. In other words, they are simply the Earth angular velocity

vector projected onto three axes and |Ω| ≈ 7× 10−5 rad/s.

The local gravity is

g = (0, 0, gz), (6.15)

with gz ≈ −9.8 m/s.

The earth radius vector:

R = (0, 0, R), (6.16)

with R ≈ 6400 km. And finally, the gravity gradient tensor Tgg is given by:

Tgg =


Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

 . (6.17)

6.1.2 Contrast Model

With the above set of symbols, we can express the final atom interferometer phase

output in hundreds of terms, which can be rearranged in a form that is easily given

physical meaning of. We will discuss this in more detail in the next section 6.2. In this

section, we only focus on the terms that affects interferometer contrast significantly.

The terms that could reduce interferometer contrast are those that depend on

initial position r0 and velocity v0, because if a particular phase term depends on

these initial conditions, then the atoms with different initial condition get different

phase output. In other words, those terms make the phase contribution incoherent

across the atom cloud, thus reducing interferometer contrast. The leading contrast-

related terms are as follows:

φcontrast−related = + k1x(rix + vixt0) (6.18)

− 2k2x(rix + vix(t0 + T )) (6.19)

+ k3x(rix + vix(t0 + 2T )) (6.20)

+ k1z(riz + vizt0) (6.21)
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− 2k2z(riz + viz(t0 + T )) (6.22)

+ k3z(riz + viz(t0 + 2T )) (6.23)

The rule of calculating contrast has been outlined in section 3.2.2.4, and here we

present the complete result with our symbol set defined in the previous section 6.1.1:

χ = exp

(
−(θ1x − 2θ2x + θ3x)

2k2
effr

2
0

4

)

· exp

(
− [t0(θ1x − 2θ2x + θ3x) + 2T (−θ2x + θ3x)]

2k2
effv

2
rms

2

)

· exp

(
−(θ1z − 2θ2z + θ3z)

2k2
effr

2
0

4

)

· exp

(
− [t0(θ1z − 2θ2z + θ3z) + 2T (−θ2z + θ3z)]

2k2
effv

2
rms

2

)
. (6.24)

Here r0 is the atom cloud initial 1/e-radius, and vrms is the classical rms thermal

velocity:

vrms =

√
kbTa
m

, (6.25)

where kb is the Boltzmann constant, and Ta is the classical thermal temperature of

the atom cloud.

The atom cloud is detected as an assemble, with corresponding phase averaged

over all the atoms in the cloud. Since the total phase of a single atom contains only

linear terms of its initial position and velocity, the average phase of the atom cloud has

same expression as single atom except the initial condition r0 and v0 are replaced by

the assemble average r∗0 and v∗0. In the next section 6.2, interferometer phase model

uses initial conditions of r∗0 and v∗0, concerning only the overall atom cloud behavior.

6.1.3 Platform Noise and Contrast Noise

As discussed in the last sub-section, platform angular noise introduces contrast noise

which can be calculated as equation 6.24. Ellipse fitting picks up this contrast noise

in the fitting process and mistakenly interprets it as “apparent” phase noise. The
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magnitude of this effect can easily be simulated, as shown in figure 6.2. In the

contrast-noise-dominated system, it is advantageous to run the interferometer near

φd = 0 or φd = π because in that case there are some data points at the middle of

both sensors’ fringes where contrast noise effect is minimum. This is clearly shown

in the simulation as the impact of platform noise on ellipse fitting is much smaller

when two sensors are nearly in-phase (φd = 0.2). Experimental tests qualitatively

and quantitatively confirmed these simulation results.

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

rms pitch noise [urad]

co
nt

ra
st

 n
oi

se

 

 

0 1 2 3 4 5
0

10

20

30

40

50

rms pitch noise [urad]

ph
as

e 
no

is
e 

[m
ra

d/
el

lip
se

]

 

 

per shot

per ellipse
(φ

d
=π/2 rad)

(φ
d
=0.2 rad)

Figure 6.2: Platform noise and contrast noise: the contrast noise itself does not
depend on the differential phase between sensors, but its impact on ellipse fitting is
much smaller when two sensors are nearly in-phase. Pitch noise is assumed to be
white (pitch angles at three pulses are reasonably independent) and is the only noise
source. Other parameters: r0 = 2.2 mm, vrms = 1.2 cm/s, T = 85 ms, and t0 = 20
ms.

6.1.4 Term Evaluation

The symbolic model in the Earth frame has been solved by computer, and we numer-

ically evaluated all terms with the following maximumly possible values:

T = 85 ms (6.26)

t0 = 20 ms (6.27)

rix = 0.005 m (6.28)

riy = 1 m (6.29)
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riz = 0.005 m (6.30)

vix = 0.02 m/s (6.31)

viy = 0.02 m/s (6.32)

viz = 1 m/s (6.33)

θjx = 20 µrad (6.34)

θjz = 20 µrad (6.35)

ωx = 7× 10−5 rad/s (6.36)

ωy = 7× 10−5 rad/s (6.37)

ωz = 7× 10−5 rad/s (6.38)

R = 6400 km (6.39)

gz = −9.8 m/s (6.40)

Txx = Tyy = −gz/R (6.41)

Tzz = 2gz/R (6.42)

Other constants can be found in appendix A. We pick out about hundred terms that

are at least 0.1 mrad, and rearrange them into a physically-meaningful form. The

result can be understood easily in the inertial frame, and will be discussed in section

6.2.

6.1.5 A Note on Numerical Calculation

The above procedure retains symbolic form until the last minute when actual numbers

are plugged into individual terms. The advantage of using symbolic calculation is that

it is easy to identify physically-meaningful terms and the most difficult part of the

calculation, solving differential equations, does not have to be repeated for every shot

in parameter optimization and fitting algorithm. However, in certain cases, solving

problems completely numerically may also be required. When numerically solve the

differential equation, one might run into underflow problem with double-precision

numbers in computer. It is easier to see this problem if one expands the centrifugal
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force term in equation 6.1:

[Ω× (R + r)]2 = Ω2(R + r)2 − [Ω · (R + r)]2 (6.43)

= Ω2R2 + (Ω ·R)2 (6.44)

+ Ω2(2R · r + r2)− 2(Ω ·R)(Ω · r)− (Ω · r)2 (6.45)

Note that R ≈ 6400 km, while r is the atom position with respect to its initial position

and typically on the order of 5 cm. So the term Ω2r2 is about 10−16 smaller than

Ω2R2 and standard IEEE double-precision number in computer has relative precision

of 10−16 so the term Ω2r2 is easily ignored during numerical computation yet all the

important gravity terms are in the variable r. Nevertheless, the terms in the line of

6.44 are the same for two sensors and will be eliminated when differential measurement

are made between sensors. Without these terms, Ω2r2 is only 10−8 smaller than other

primary terms in the equation and can be retained during computation. Therefore,

the numerical evaluation is carried out by essentially throwing away the constant

terms in the line of 6.44 and it becomes a valuable tool to verify our symbolic model,

which is more computationally intensive.

6.2 Analysis in the Inertial Frame

In this section, we analyze atom interferometer in the inertial frame. We first define

effective local gravity according to equation 6.2:

gi = g −Ω× (Ω×R), (6.46)

(The superscript i denotes inertial frame) or:


gix = −ωxωzR
giy = −ωyωzR
giz = gz + ω2

xR + ω2
yR

(6.47)
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So the atom moves according to

 rix(t) = r∗ix + v∗ixt+ gixt
2

riz(t) = r∗iz + v∗izt+ gizt
2

(6.48)

The keff is defined with respect to the Earth frame for every Raman pulse accord-

ing to equation 6.10:

k(t) = (kx(t), keff + ky(t), kz(t)), (6.49)

where pulse number j is replaced by time t. keff in the inertial frame is given by

ki(t) = k(t) + (Ω t)× k(t), (6.50)

or:  kix(t) = kx(t)− keffωzt+ kz(t)ωyt

kiz(t) = kz(t) + keffωxt− kx(t)ωyt
(6.51)

where smaller terms are ignored. With inertial frame representation of ki(t), ri(t),

and gi, the interferometer phase can be written as:

φi = + kix(t0)rix(t0)− 2kix(t0 + T )rix(t0 + T ) + kix(t0 + 2T )rix(t0 + 2T ) (6.52)

+ kiz(t0)riz(t0)− 2kiz(t0 + T )riz(t0 + T ) + kiz(t0 + 2T )riz(t0 + 2T ) (6.53)

+ (ky(t0)− 2ky(t0 + T ) + ky(t0 + 2T ))r∗iy (6.54)

+ keff(giy + Tyy(r
∗
iy + v∗iy(t0 + T )))T 2 (6.55)

+ keff(ω2
x + ω2

z)r
∗
iyT

2 (6.56)

+
1

6
keff(−gizωx + gixωz)[t

3
0 − 2(t0 + T )3 + (t0 + 2T )3]. (6.57)

This result is explained line by line as following. Line 6.52, 6.54, and 6.53 are laser

phase along x, y, and z axis, respectively. Terms in line 6.54 are very small since

ky(t) is second-order sensitive to angular jitter, so only r∗iy (∼ 1 m) is considered here,

while motions along Raman axis are ignored (v∗iyT ∼ 1 mm).

Line 6.55 is acceleration contribution along Raman axis. Since effective acceler-

ation giy is defined at the origin of the Earth frame (or the midpoint between two
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sensors), the average acceleration the atom cloud senses is (giy +Tyy(r
∗
iy +v∗iy(t0 +T )))

with extra Tyy term added where the average position of the atom during the inter-

ferometer sequence is used.

Line 6.56 gives the apparent gravity gradient terms. [(ω2
x + ω2

z)r
∗
iy] is the effective

centrifugal force around the center of two sensors, and this becomes an effective

acceleration the atom interferometer sequence senses.

ω1

y
x

z

s

Raman Axis

Atom motion

g

Earth looking down 
from the North pole

Figure 6.3: Extra phase shift due to earth rotation.

Line 6.57 is an even smaller yet very interesting effect. We consider a simple case

to explain this effect: suppose the apparatus is on the equator, and Raman axis is

east-west as shown in figure 6.3. In this case ωy = ωz = 0, and ωx = Ω (Earth

rotation rate). In the view of inertial frame, atom gets an extra initial velocity along

y-axis during launching due to earth rotation, and to the first order, the extra motion

along y-axis is:

s(t) = −ωxR t. (6.58)

After time t, the local gravity g has projection along Raman axis, so the atom gets

extra acceleration of

aextra(t) = gs(t)/R = −ωxtg. (6.59)
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This extra acceleration is in addition to the existing motion and produces extra motion

along Raman axis:

yextra = −1

6
ωxg

i
zt

3, (6.60)

and to the first order, keff · yextra gives extra laser phase shown as one term in line

6.57. In general ωz 6= 0, and one can derive both terms in that line.

The result presented here is only an approximation. However we compared our

result with symbolic model using maximumly possible values discussed in section

6.1.4, and proved that our inertial frame model matches the Earth frame model

within 0.1 mrad, thus practically the same.

This model calculates single sensor phase output. For dual sensor differential

measurement, such as gravity gradient measurement, simply the difference between

two such expressions with different initial conditions are used. More precisely, one

sensor has r0y = −L/2 while the other has r0y = L/2, where L is the measurement

baseline. In fact many terms in φi are common between two sensors and are thus

eliminated in differential measurements. This will be discussed in more detail in

section 6.5.

6.3 Imperfection of Raman Windows

Ideally, there is only vacuum between two atom clouds in two atomic sensors; in

reality, our sensors are separated by about one meter and there are two Raman

windows between them. Due to manufacture imperfections, these two windows have

wedge on the order of few hundred microradians, and they attenuate the Raman beam

by about 7% total. Various effects are arised from this Raman window imperfection.

6.3.1 Wedge

In our apparatus, Raman window wedge is not along any particular axis, thus can

be split into vertical wedge βv and horizontal wedge βh components. Vertical wedge

contributes the majority of the differential phase we observe between two sensors.

Figure 6.4 shows the quadratic dependence of differential phase as a function of the
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interrogation time T :

φ = keff · gT 2 = keff g βvT
2, (6.61)

where g is the local gravity and T is the interrogation time. This differential phase is

arised from the fact that local gravity g projects different amount onto Raman axis

(keff) in two sensors. We usually refer this effect as “little-g projection”.

Note here the wedge angle βv refers to the beam steering angle in the vertical

direction, and βv = (n− 1)αv where n is the index of refraction of the window glass

and αv is the actual vertical wedge angle between two glass surfaces. In this thesis,

wedge angle β always refers to the beam steering angle unless otherwise explicitly

specified.

T (ms)

0 2 4 6 8 10 12

D
i�

er
en

tia
l P

ha
se

 (r
ad

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T=3ms
T=5.5ms
T=7ms
T=8.4ms
T=9.5ms
T=10.5ms
T=11.4ms

normalized atom number
in sensor A

Se
n

so
r B

Figure 6.4: Short-T phase v.s. T : this shows a very good quadratic dependence
of phase as a function of the interrogation time T . The inferred vertical wedge is
about 150 µrad. The inset figure shows all the data points that are used to extract
differential phase for various T using ellipse fitting.

The horizontal wedge component βh does not introduce differential phase when

the platform is perfectly levelled. However, when the platform rolls (rotates around
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Raman axis), βh starts to contribute little-g projection:

φ(θy) = keff g βhθyT
2 + keff g βv(1− θ2

y/2)T 2, (6.62)

where θy is the roll angle. This effect is usually referred as “roll sensitivity”. Differen-

tial phase is first order sensitive to horizontal wedge βh, but is second order sensitive

to vertical wedge βv. The second order term is usually ignored.

Figure 6.5 shows experimental data in our particular apparatus. The inferred

horizontal wedge is 120 µrad. This roll sensitivity was reduced by a factor of 10

with a carefully adjusted corrective wedge, thus is not a limiting factor in our gravity

gradient survey tests.
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Figure 6.5: Roll sensitivity: various tests are shown, and interrogation T is always
85 sec in these tests. Roll sensitivity without corrective wedge is about 125 rad/rad.
This sensitivity was reduced by a factor of 10 with a carefully adjusted corrective
wedge.

Above results concern only the static case. In dynamic case when the platform

moves during interferometer sequence, wedge has to be considered in the dynamic
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error model which will be discussed in detail in section 6.4.

6.3.2 Window Attenuation

In our apparatus, the two Raman windows between atomic clouds attenuate the

Raman beam by 1 − η = 7% total, so two sensors receive different Raman beam in-

tensities. This attenuation does not impose a limit on the interferometer performance,

but does give some interesting effects in the system.

We observe ≈ 10 mrad differential phase shift between sensors when the second

pulse length tµ is changed by 5%. The phase shift is primarily from the differential

ac Stark effect. From section B.1 we know single sensor gets about π rad ac Stark

phase shift per beam during a π-pulse (length tµ0):

φAC
3 = α3I3tµ0 ≈ π, (6.63)

φAC
4 = α4I4tµ0 ≈ π, (6.64)

when the differential ac Stark is canceled:

α3I3 = α4I4, (6.65)

thus the differential ac Stark phase shift for single sensor is 0:

φAC = φAC
3 − φAC

4 = 0. (6.66)

However, due to window attenuation, this differential ac Stark can never be canceled

simultaneously for both sensors (at least in the current Raman beam scheme), so the

difference in differential ac Stark phase between two sensors is tµ dependent:

∆φAC = (α3ηI3tµ − α4I4tµ)− (α3I3tµ − α4ηI4tµ) (6.67)

= (1− η)α4I4tµ − (1− η)α3I3tµ (6.68)

≈ (1− η)π(tµ/tµ0). (6.69)
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This explains the phase sensitivity to pulse length. Similar calculation can also explain

phase shift when Raman beam intensity is changed or Raman single-photon detuning

is changed. In particular, phase sensitivity to Raman single-photon detuning is about

0.07 mrad/MHz.

6.4 Wedge Noise Model

When wedge is inserted into the system, correcting terms need to be added to the error

model. This mainly includes the optical path length change between the reference

point and the sensor, or simply between two sensors. We start with an elementary

model.

6.4.1 Two-Dimensional Wedge

Figure 6.6 shows a single two-dimensional wedge case and straightforward calculation

gives the optical path length between sensor 1 (atom cloud at S1) and sensor 2 (S2):

S1→2 = AB + nBC + CD (6.70)

≈ [l1 + l2(1− β2/2) + β(u− h)]− (βl2 + h)θ − 1

2
(l1 + l2)θ2, (6.71)

where n is the index of refraction and β = (n−1)(α1 +α2) is the wedge beam steering

angle, the same convention as in the section 6.3.1. One might expect l1 and l2 to be

symmetric in equation 6.71 but they are not. This is because we define angle θ at

point S1. One can calculate optical path length from S2 to S1 by defining a beam

angle θ′ at S2, and get:

S2→1 ≈ [l2 + l1(1− β2/2) + β(u)]− (βl1 − h)θ′ − 1

2
(l1 + l2)θ′2. (6.72)

Using θ′ = −θ − β, one can prove S1→2 = S2→1. Note that during the calculation,

retaining second-order terms in cos() is essential because that could contain first-order

terms of θ.

Figure 6.7 adds a second wedge between sensors. One can still calculate optical
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Figure 6.6: Diagram of single 2D wedge.

path length from one sensor to the other. However, by selecting a reference point

O between two wedges, we can simply use the single wedge results twice to get the

answer:

S2D = l2 + l1

(
1− β2

1

2

)
+ β1u1 − (β1l1 +H)(−θ)− 1

2
(l1 + l2)θ2

+ l3 + l4

(
1− β2

2

)
+ β2(u2 − h)− (β2l4 +H + h)θ − 1

2
(l3 + l4)θ2

= (l2 + l3) + l1

(
1− β2

1

2

)
+ l4

(
1− β2

2

)
+ β1u1 + β2(u2 − h)

+ (β1l1 − β2l4 − h)θ − 1

2
(l1 + l2 + l3 + l4)θ2. (6.73)

H vanishes, and l2&l3 always appear together as (l2 + l3), both are expected because

S2D should not depend on the selection of reference point O.

When we calculate optical phase without wedge in the error model, we simply use

the beam wavevector keff at the sensor and calculate φ = keff ·
−−→
OSi. Therefore, to find

wedge correcting terms to the error model, we first calculate the no-wedge optical
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Figure 6.7: Diagram of dual 2D wedge.

path length between sensors as following:

S2D0 = (l3 + l4)

(
1− (θ + β2)2

2

)
− (h+H)(θ + β2)

+ (l1 + l2)

(
1− (−θ + β1)2

2

)
− (H)(−θ + β1). (6.74)

The correcting terms for this two-dimensional case are:

C2D = S2D − S2D0 = H(β1 + β2) + β1u1 + β2u2 + (l3β2 − l2β1)θ. (6.75)

Note that large part of this correction, especially the first term, is relatively stable.

We are more interested in using this wedge model to decorrelate platform motion,

which introduces ∆u1, ∆u2, and ∆θ. The jitter terms to put into the error model are

then:

∆C2D = β1∆u1 + β2∆u2 + (l3β2 − l2β1)∆θ. (6.76)

It is important to note that jitter in atom cloud position (i.e. ∆h) does not show
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up in C2D or ∆C2D, because it was already fully included in the error model.

6.4.2 Three-Dimensional Wedge

Three-dimensional wedge, as in our apparatus, is not simply a linear summation

of vertical wedge and horizontal wedge effects. The coupling between these two

complicates the analysis. Figure 6.8 shows the coordinate system for our calculation,

which is carried out mostly by algebra instead of relying on the visual analysis as in

the two-dimensional case.

S2 (xd, L+l, zd)

x

y

z

αH

θx,θz

αv

L

d

O

l

i0 i
n

o

r0 r1

Figure 6.8: 3D single wedge coordinate system for calculation.

Reference point O is at the origin, and sensor is at S2 = (xd, L + l, zd). Suppose

the beam steers by θx and θz around x-axis and z-axis, respectively. The Raman

beam (unit) vector off O is:

i0 =

(
−θz, 1−

θ2
x

2
− θ2

z

2
, θx

)
. (6.77)

Without losing generality, we assume the first surface of the wedge is on the plane of

y = L. The Raman beam intersects with this surface at r0 = (−Lθz, L, Lθx). The
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(unit) beam vector inside the wedge is therefore:

i =

(
−θz
n
, 1− θ2

x

2n2
− θ2

z

2n2
,
θx
n

)
, (6.78)

where n is the refractive index of the wedge.

Suppose the wedge angles are αh and αv in the horizontal and vertical direction,

respectively. And as usual, the beam steering angles are denoted as βh = (n− 1)αh,

and βv = (n − 1)αv. Suppose the wedge rotates θy around y-axis, then the normal

vector of the second surface of the wedge is

n =

(
αh cos(θy) + αv cos(θy), 1−

α2
h

2
− α2

v

2
, αv cos(θy)− αh cos(θy)

)
. (6.79)

Suppose the second surface of the wedge passes through point P = (ux, L+d, uz).

Here d denotes the wedge thickness where the Raman beam normally passes through,

while ux and uz represent wedge motion along horizontal and vertical directions,

respectively. In this representation, the second surface of the wedge can be expressed

as (r − P ) · n = 0, and with the incident beam in the wedge:

x− (−Lθz)
ix

=
y − L
iy

=
z − Lθx

iz
, (6.80)

we can solve the incident point r1 = (x1, y1, z1) on the second surface of the wedge.

With a little vector algebra, we can calculate the outgoing beam (unit) vector off

the wedge:

o = n i +
(
−n(i · n) +

√
n2(i · n)2 − n2 + 1

)
n. (6.81)

One can verify that to the first order:

ox = −θz − βh − βvθy (6.82)

oz = θx − βv + βhθy, (6.83)

as expected. The total optical path length can then be calculated as the sum of
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segments:

S3D = L|r0|+ n|r1 − r0|+ o · (S2 − r1). (6.84)

With all second-order terms retained:

S3D = l

(
1− β2

h

2
− β2

v

2

)
+ L+ d

(
n− 1 +

β2
h

2
+
β2

v

2

)
+ βh(ux − uzθy − xd + zdθy)

+ βv(uz + uxθy − xdθy − zd)

+ [zd + (l − d)βv]θx + [−xd − (l − d)βh]θz

+

[
−L+ l

2
+
(
n− 1

n

)
d

2

]
(θ2
x + θ2

z). (6.85)

Similar to the two-dimensional case, the optical path length in no-wedge case is

S3D0 = o · S2 (6.86)

= (L+ l)

(
1− β2

h

2
− β2

v

2

)
− βhxd − βvxdθy − βvzd + βhzdθy

+ [zd + (L+ l)βz]θx + [−xd − (L+ l)βx]θz

− L+ l

2
(θ2
x + θ2

z). (6.87)

The correcting terms are:

C3D = S3D − S3D0 (6.88)

= d

(
n− 1 +

β2
h

2
+
β2

v

2

)
+ L

(
β2

h

2
+
β2

v

2

)
+ βh(ux − uzθy) + βv(uz − uxθy)

+ (−d− L)βvθx + (d+ L)βhθz

+
(
n− 1

n

)
d

2
(θ2
x + θ2

z). (6.89)

Note atom cloud position jitter xd and zd are already fully included in the error

model S3D0 thus do not appear in C3D. Like in the two-dimensional case, we are only
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interested in the jitter terms ∆θx, ∆θz, ∆ux, and ∆uz. And since in our apparatus

d ≈ 1 cm, much smaller than L ∼ 1 m, we can safely ignore the last line in the above

equation. As a result, the jitter terms to put into the error model are:

∆C3D = βh(∆ux −∆uzθy) + βv(∆uz −∆uxθy) + (L+ d)(βh∆θz − βv∆θx) (6.90)

To estimate the order of magnitude of this correction, we consider a special case:

suppose the platform rotation center is right below the reference point at the gimbal

rc = (0, 0,−H) where H is the platform height. If the platform has a rotation of

(θx, θy, θz), the wedge position is then:


ux

·
uz

 ≡ w =


θx

θy

θz

×


0

L

+H

 =


Hθy − Lθz

·
Lθx

 (6.91)

Plug ux and uz into equation 6.90, we get:

∆C3D = βhHθy + d(βhθz − βvθx), (6.92)

in which smaller terms are ignored. Since d� H, this can be further reduced to

∆C3D = βhHθy (6.93)

This result apparently agrees with intuition. In our apparatus, βh ∼ 100 µrad, H ∼ 1

m, and θy ∼ 1 µrad, phase correction due to wedge (keff · ∆C3D) is at least a few

mrad, big enough to be included in the model.

6.5 Gradiometer Error Terms

In section 6.2, we calculated single sensor phase output. For dual sensor differential

measurement, such as gravity gradient measurement, we simply take he difference

between two such expressions with different initial conditions. More precisely, one

sensor has r0y = −L/2 while the other has r0y = L/2, where L is the baseline. In
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addition, two sensors may have other different parameters. We now make an effort

to look at all the error terms in detail. First we consider a relatively ideal condition,

and then add in stable apparatus errors that do not change shot-to-shot (e.g., Raman

misalignment), and finally consider jitter terms that is caused by platform motion

which is not repeatable shot-to-shot.

Similar analysis can be found in [74] section 3.3, [70], and [82].

6.5.1 Ideal Condition

We start with a relatively ideal condition. Atoms are perfectly aligned with Raman

beams, and their initial velocities are perfectly vertical (v∗iz = vL = 1 m/s for evalua-

tion). The only non-ideal element we add in here is that the Raman windows between

sensors have a total wedge of βh and βv (horizontally and vertically, assumed to be

both 200 µrad in term evaluation). Other symbols use values in section 6.1.4. Table

6.1 shows terms in this ideal case with explanations.

Term Value [rad] Notes

keffgzβvT
2 2.04× 102 Little-g projection (eq. 6.61)

−keffβhRωyωzT
2 7.47× 10−1 Apparent gg (see giy in eq. 6.47)

keffω
2
xRβvT

2 7.47× 10−1 Little-g projection (see giz in eq. 6.47)

keffω
2
yRβvT

2 7.47× 10−1 Little-g projection (see giz in eq. 6.47)

keffTyyT
2L 1.52× 10−1 Gravity gradient (!)

−3keffωygzβhT
3 3.75× 10−3 Gyro

−2keffωyβhvLT
2 3.04× 10−3 Gyro

Table 6.1: Gradiometer phase in ideal condition: all terms above 1 mrad are shown,
and values are shown in absolute number.

Note that although some of the wedge-induced terms are pretty large, they are

stable. Therefore the gravity gradient induced phase shift is the dominant phase shift

when the apparatus is translated to a location with a different Tyy. Note that if the

apparatus rotates, Earth rotation components ωi could change, and wedge-induced

phase shift would show up.
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6.5.2 Stable Condition

Now we add Raman beam misalignment and initial velocity mismatch between sen-

sors, but we still assume the platform is stable. There are two ways to introduce

Raman beam misalignment. One could assume initial position of the second sensor

is not at the ideal location (0, L/2, 0); or one could assume the stable Raman beam

wavevector is not (0, keff , 0), or neither. For simplicity, we assume Raman beam

wavevector is ideal (0, keff , 0) in the first sensor. We introduce some new symbols in

table 6.2.

Sensor 1 Sensor 2

Initial position r∗0 (0,−L/2, 0) (xh, L/2, xv)

Initial velocity v∗0 (vh0, vb0, vL + vv0) (vh0 + vh, vb0 + vb, vL + vv0 + vv)

Bottom Raman beam k1,k3 (0, keff , 0) (keff βh, ∗, keff βv)

Top Raman beam k2 (keff γh, ∗, keff γv) (keff (βh + γh), ∗,
keff (βv + γv))

Table 6.2: Symbols for stable gradiometer.

Here xh and xv represent Raman beam misalignments (1 mm for evaluation),

vh and vv represent transverse initial velocity mismatch between sensors (5 mm/s),

and βh and βv are the wedge between sensors, as mentioned in the last section.

Component labelled ∗ can be derived from the other two components. vb is the

longitudinal initial velocity mismatch (1 cm/s, see section 8.3). γh and γv represent

horizontal and vertical misalignments between top and bottom Raman beams, and

are typically on the order of 1 µrad (see section 8.5.2). Note that γh and γv are

generally not the same in two sensors, but are assumed to be the same in this section

for simplicity (more detailed model calculation shows that even if they differ by about

1 µrad, it does not introduce terms that are important for motion decorrelation in

our experiment). The gradiometer phase terms in this stable condition can be found

in table 6.3 except those already appeared in table 6.1 (in ideal condition).

Note that vb0, vh0 and vv0 terms are very small (∼ 10−5 rad at most), and only

initial velocity mismatches vh and vv really matter in the error terms. The extra term
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Term Value [rad] Notes

−2keffωzvhT
2 7.60× 10−2 Gyro

2keffωxvvT
2 7.60× 10−2

−2keffxhγh 2.95× 10−2 Lever arm

−2keffxvγv 2.95× 10−2

−2keffvhTγh 1.24× 10−2

−2keffvvTγv 1.24× 10−2

keffβvγvL 2.95× 10−3

keffβhγhL 2.95× 10−3

−2keffγhvht0 2.95× 10−3

−2keffγvvvt0 2.95× 10−3

Table 6.3: Gradiometer phase in stable condition: all terms above 1 mrad are shown,
and values are shown in absolute number.

due to baseline change during interferometer sequence (because of vb) is keffTyyvbT
3,

which is on the order of 0.1 mrad, and can be ignored in practical analysis. It is also

interesting to note that the terms in the two transverse directions (subscript h and

v) are symmetric. In the next section where platform jitter terms are added in, we

will assume that the jitter is only in yaw, but not in pitch. Corresponding terms in

pitch can be easily derived from yaw terms.

6.5.3 Jitter Terms

Sensor 1 Sensor 2

Initial position jitter δr∗0 (xjh0, 0, 0) (xjh0 + xjh, 0, 0)

Initial velocity jitter δv∗0 (vjh0, 0, 0) (vjh0 + vjh, 0, 0)

1st Raman pulse δk1 (keffθ
j
1z, 0, 0) (keffθ

j
1z, 0, 0)

2nd Raman pulse δk2 (keffθ
j
2z, 0, 0) (keffθ

j
2z, 0, 0)

3rd Raman pulse δk3 (keffθ
j
3z, 0, 0) (keffθ

j
3z, 0, 0)

Table 6.4: Symbols for jitter gradiometer. Noise is added only to yaw for simplicity.
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Platform jitter noise is added to yaw as shown in the table 6.4. Superscript j is

used to denote jitter terms. xjh and vjh represent initial position and velocity jitter

difference between two sensors (analysis shows that terms related to xjh0 and vjh0 are

very small), and θj1z, θ
j
2z, and θj3z represent platform angle at three pulses. We use

xjh = 1 mm, vjh = 0.1 mm/s, and θj.z = 10 µrad for term evaluation.

The primary jitter terms are not difficult to write down (see section 6.2):

φ = keff(θj1z − 2θj2z + θj3z)(xh + xjh)

+ keff [(θj1z − 2θj2z + θj3z)t0 + 2(θj3z − θ
j
2z)T ](vh + vjh). (6.94)

Besides these terms, there are some other extra jitter terms on the order of mrad or

higher, shown in table 6.5.

Term Value [rad] Notes

keffβhH(θj1y − 2θj2y + θj3y) ∼ 6× 10−2 Wedge correction (eq. 6.93)

−keffLβh(θj1z − 2θj2z + θj3z)/2 ∼ 3× 10−2 Lever arm

−2keffγhx
j
h 2.95× 10−2 Lever arm

−keffL((θj1z)
2 − 2(θj2z)

2 + (θj3z)
2)/2 ∼ 2× 10−3 Lever arm

−2keffωzv
j
hT

2 1.52× 10−3 Gyro

Table 6.5: Extra gradiometer phase in jitter condition: all terms above 1 mrad are
shown except those already in equation 6.94, and values are shown in absolute number.

Since the wedge correction term and some lever arm terms are pretty big, jitter

terms in equation 6.94 are not sufficient for platform noise decorrelations in practice.

Also, the wedge correction term shown here only represents a special case, and in

general the platform rotation center can be anywhere when our truck freely rolls on

the road. Equation 6.90 should be used for wedge error correction, and that may

require independent linear motion or rotation center detections on the platform.



Chapter 7

Various Noise and Effects Study

Every precision measurement is accompanied by a variety of noise sources, and our

gravity gradient measurement apparatus is no exception. This chapter discusses some

of the major problems and noise sources we encountered and how we overcome them,

with a few other sections summarizing some interesting effects we observed. During

noise study, a series of diagnosis tests was also developed to quickly identify problems

when the gradiometer performance decreases without any obvious reasons.

7.1 Interferometer Simulator

To study various noise effect and to optimize system parameters, an interferome-

ter simulator program using Monte Carlo technique was developed to simulate the

atomic process of atom interferometer sequence. In particular, Raman beam inten-

sity profile, atom cloud size and density distribution, atom cloud temperature and

thermal motion during interferometer sequence, Raman beam single-photon detun-

ing, and window attenuation between sensors (see section 6.3.2) are all taken into

consideration. However, spontaneous emission effects (see section 7.2) and inertial

effects mentioned in the error model (chapter 6) are not included in the simulator to

simplify the model.

Standard parameters used in the model are shown in table 7.1, and pulse lengths

and efficiencies are calculated by the simulator, shown in table 7.2. π-pulse length gets

93
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longer because atom cloud expands during interferometer sequence thus the average

Rabi frequency across the cloud decreases. Simulator also predicts overall contrast

of this interferometer sequence to be 85%. Various parameters can be varied in this

simulator to study noise effect and to find optimal parameters. Two examples will be

discussed in the two sub-sections followed.

Parameter Symbol Value Notes

Initial atom cloud 1/e-radius ra 2.2 mm Measured by CCD camera

Atom cloud temperature Ta 2.3 µK see section 7.3

Interrogation time T 85 ms

Raman beam 1/e-radius rb 6.5 mm see section 7.1.2

Offset lock setting ∆O 1.2 GHz see figure B.1

Window transmissivity η 93% see section 6.3.2

Raman beam 1 power P1 130 mW see figure B.1

Raman beam 2 power P2 96.3 mW to null diff. ac Stark shift

Table 7.1: Standard parameters used in interferometer simulator.

Pulse # Atom cloud 1/e-radius π-pulse length π-pulse efficiency

1 2.2 mm 3.5 µs 94%

2 2.6 mm 3.6 µs 92%

3 3.6 mm 3.9 µs 84%

Table 7.2: Pulse performance calculated by interferometer simulator.

One important aspect of this interferometer simulator based on Monte Carlo tech-

nique is the statistical noise level. The more number of atoms per sample, the lower

statistical noise in the simulator. Note that this noise has nothing to do with quantum

projection noise [83], and the simulator is not subject to quantum projection noise

because it calculates the exact final state |Ψ〉 = c1|g〉+ c2|e〉, and uses the coefficients

c1 and c2 directly. The statistical noise is from the atom ensemble generation. For

every shot a different atom sample is generated and each atom has different initial

position and velocity. This randomization directly links to statistical noise. Also this
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statistical noise is not pure phase noise, therefore results in section 5.1.1 cannot be

applied to convert per-shot noise to per-ellipse noise. Full simulator and ellipse fitting

algorithm are repeated to test the statistical noise directly, and the results are shown

in table 7.3.

Atom number # Statistical Noise (mrad/ellipse)

103 6.3

2× 103 4.2

104 1.98

2× 104 1.56

105 0.66

2× 105 0.49

Table 7.3: Noise level of interferometer simulator with different number of atoms in
the sample. Ellipse fitting uses 20 data points per ellipse.

To get down to 0.5 mrad/ellipse (apparatus design goal) and study noise sources

at that level, 2 × 105 of atoms are needed per sample. We now proceed with two

applications of this interferometer simulator.

7.1.1 Intensity Noise

Interferometry sequence is usually second-order sensitive to power fluctuation of the

driving field (either optical or microwave). For example, π/2− π/2 microwave clock

gives [50]

cg = ei(φ2−φ1)

[
− sin

(
θ1

2

)
sin

(
θ2

2

)]
+ cos

(
θ1

2

)
cos

(
θ2

2

)
, (7.1)

where ∆φ = φ2 − φ1 is the differential phase this sequence experiences between two

pulses, and pulse area θ1 and θ2 are ideally π/2. In the presence of microwave power

fluctuation, we can express this power noise in terms of pulse area noise:

θi =
π

2
+ ∆θi i = 1, 2 (∆θi � 1). (7.2)
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And the probability of finding atoms in the starting state is:

|cg|2 =
1

2
[1− cos (∆φ) cos (∆θ1) cos (∆θ2) + sin (∆θ1) sin (∆θ2)] . (7.3)

This clearly shows the second-order sensitivity to the power fluctuation ∆θ1 and ∆θ2.

However, in many cases intensity noise does limit the phase sensitivity of ap-

paratus, and characterizing intensity noise becomes a necessity. Single π/2-pulse

performance, commonly referred as π/2-test, is very sensitive to, and usually used to

quantify intensity noise. Following equation 2.4, the probability of finding an atom

in the other state after a pulse is

T (Ωeg, δ, τ) =
Ω2
eg

Ω2
eg + δ2

sin2
(√

Ω2
eg + δ2

τ

2

)
. (7.4)

It is easier to work with this equation using “pulse-unit”, or expressing these three

parameters in terms of standard condition:


Ωeg = ω′Ωeg0

δ = δ′Ωeg0

τ = t′/Ωeg0

(7.5)

The new parameter set (ω′, δ′, t′) are unit-less, and ideally ω′ = 1, δ′ = 0, and t′ = π/2

for a π/2-pulse. Equation 7.4 now becomes:

T ′(ω′, δ′, t′) =
ω′2

ω′2 + δ′2
sin2

(√
ω′2 + δ′2

t′

2

)
. (7.6)

The π-pulse is second-order sensitive to all three parameters:

T ′(1 + ∆ω, δ′, π + ∆t) ≈ 1− 2.47 (∆ω)2 − δ′2 − 0.25 (∆t)2 − 1.57 ∆ω ·∆t. (7.7)
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On-resonance π/2-pulse has first-order sensitivity to pulse power and length (second-

order terms are all ignored in the following T ′ expressions in this section):

T ′(1 + ∆ω, δ′, π/2 + ∆t) ≈ 0.5 + 0.79 ∆ω + 0.5 ∆t. (7.8)

Another commonly used test is frequency-detuned π/2-test, in which pulse length is

set to on-resonance π-pulse length but detuning is set at a value such that only half

of the atoms are transferred to the other state. Condition T ′(1, δ0, π) = 1/2 gives

δ0 = 0.799, and

T ′(1 + ∆ω, δ0 + ∆δ, π + ∆t) ≈ 0.5− 0.19 ∆ω − 0.95 ∆δ − 0.30 ∆t. (7.9)

This test has a strong sensitivity to frequency noise, and is sometimes used to char-

acterize ac Stark noise in Raman system. In order to further reduce the sensitivity to

∆ω, one could tune both the detuning and pulse length until we null the first-order

sensitivity to ∆ω: 
∂T ′(ω′, δ′, t′)/∂ω′ = 0

T ′(ω′, δ′, t′) = 0.5

ω′ = 1

(7.10)

The first solution is δd = 0.862 and td = 0.933 π, and in this case:

T ′(1 + ∆ω, δd + ∆δ, td + ∆t) ≈ 0.5− 0.862 ∆δ − 0.25 ∆t. (7.11)

Since pulse length timing is very accurate in our system, these tests mentioned above

can be used to distinguish and characterize pulse power fluctuation (intensity noise)

and frequency noise (ac Stark noise in Raman beams), respectively.

For the complete π/2 − π − π/2 sequence, interferometer simulator is used to

quantify the noise effect. An example is shown in figure 7.1. 1.5% intensity noise

(rms) is added to one of the Raman beams (I2), while the other Raman beam is

left to be stable. This intensity noise gives 0.75% Rabi frequency (Ωeff) noise and

1.5% ac Stark (δAC) noise (Ωeff ∝
√
I1 I2, so σΩeff

= σI2/2; and δAC = k1 I1 − k2 I2, so

σδAC
= σI2). Interferometer contrast noise arises from these two effects, and simulation
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Noise tree
σI2

σδAC

σχ

σφellipse

σφAC

Cell transmission loss 
~7%

σΩeff

Noise tree
σI

σδAC

σχ

σφellipse

σφAC

Cell transmission loss 
~7%

σΩeff

(1.5%)

(1.5%)

(1.8 mrad/ellipse)

(2.5 mrad/ellipse)

(5 mrad/shot)

(0.75%)

Figure 7.1: Intensity noise propagation to interferometer phase noise. 1.5% intensity
noise (rms) in one of the Raman beams produces 2.5 mrad/ellipse phase noise in
π/2− π − π/2 sequence. The other Raman beam is assumed to be stable.

shows contrast noise alone gives 1.8 mrad/ellipse phase noise (σχ). Note that although

interferometer is second-order sensitive to intensity noise, this second-order effect is

big enough to disturb contrast and standard ellipse fitting algorithm would pick that

out as apparent phase noise.

On top of this contrast noise effect, the 7% Raman window attenuation mentioned

in section 6.3.2 adds additional noise. Ac Stark phase noise effect is not completely

canceled because two sensors receive 7% difference in Raman beam power. According

to section B.1, ac Stark phase shift is about π rad/π-pulse, and 1.5% intensity noise

gives ∼ 50 mrad/π-pulse ac Stark phase noise, which in turn gives ∼ 4 mrad/π-

pulse differential ac Stark phase noise (differential in the sense of difference between

two sensors, not between two Raman beams). Three pulse sequence adds this effect

up to 5 mrad/shot differential ac Stark phase noise (σφAC
), or 1.8 mrad/shot using

conversion mentioned in section 5.1.1. σχ and σφAC
combined give final phase noise

of 2.5 mrad/ellipse (σellipse) which is confirmed by complete simulation as well.
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This complete simulation of intensity noise shows that the Raman beam intensity

noise has to be < 0.3% to reach our interferometer design goal (0.5 mrad/ellipse).

π/2-test gives us the tool to confirm Raman beam performance. Eventually, advanced

Raman beam scheme could almost eliminate this effect of Raman beam intensity noise

in our system (see section 9.1).

7.1.2 Raman Beam Size

With fixed amount of power in the Raman light, pulse transfer efficiency decreases as

the beam size gets smaller because the Gaussian intensity profile cannot address the

atoms at the edge of the cloud as effectively; however, the finite atom Doppler width

makes the pulse transfer efficiency smaller as the beam size increases because the

intensity and Rabi frequency decreases. Interferometer simulator was used to study

the Raman beam size effect and to find the optimal beam size. Some of the results

are shown in figure 7.2. In our apparatus, rb ≈ 6.5 mm Raman beam size was chosen

among a few trials of different beam sizes. Simulator confirms this result as well.

Similar study are done to optimize Raman beam single-photon detuning (offset

lock setting ∆O).

7.2 Spontaneous Emission

In our apparatus, two-photon transition is via a virtual level ∼ 500 MHz away from

atomic energy levels to reduce spontaneous emission effect. However, spontaneous

emission cannot be completely eliminated. Detailed calculation of spontaneous emis-

sion can be found in section B.2, and figure 7.3 shows some results as a function of

Raman single-photon detuning.

Spontaneous emission has also been experimentally measured to compare with the-

ory. In order to do that, Raman microwave frequency is tuned a few MHz away from

resonance to eliminate two-photon transition. Simply turning on this off-resonance

Raman pulse and observing atom loss gives the depumping rate due to spontaneous

emission, and can be used to infer total spontaneous emission rate.
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Figure 7.2: Various studies of Raman pulse efficiency and beam size. Top right figure
shows that there is an optimal beam size for a fixed beam power. Bottom right figure
shows that the ratio of Rabi frequency to atom Doppler width has to be at least 4 to

have decent Raman pulse efficiency. Atom Doppler width is defined as keff

√
kbTa/mCs.
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Figure 7.3: Spontaneous emission calculation: various results are plotted as a function
of offset lock setting (refer to figure B.1). P1 = 160 mW and rb = 6.5 mm in this
calculation, and P2 is calculated assuming differential ac Stark shift is always canceled.
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A more elegant way is to insert this off-resonance Raman pulse into a clean mi-

crowave π/2 − π/2 clock sequence (Uwave Clock with Optical Pulse Inserted, or

UCOPI sequence), and the decrease in microwave clock contrast as a function of

Raman pulse length gives clean measurement of spontaneous emission rate. UCOPI

sequence has also been used to measure ac Stark phase noise because tuning Raman

pulse off-resonance eliminates two-photon transition but leaves ac Stark effect largely

unaffected.

7.3 Atom Cloud Temperature

Atom cloud temperature, or the average thermal velocity, is one of the most impor-

tant numbers to determine optimal system parameters, such as Raman beam size

(see section 7.1.2). This section outlines a number of ways to measure atom cloud

temperature and attempts to explain the discrepancy in different measurements.

A conventional method to measure atom cloud temperature is the method of time-

of-flight (TOF), observing cloud size increase in time. For collisionless expansion over

a time t the 1/e-radius of the atom cloud is (see, e.g. [73] page 59)

r(t)2 = r(0)2 + 2
kbTa
m

t2. (7.12)

Therefore CCD camera image of atom cloud as a function of time gives us precise

measurement of atom cloud temperature Ta. Note that the usual detection beams

are used in taking CCD camera pictures, and we determined Ta = 2.3 µK in our

apparatus with standard sequence parameters.

A better method to measure atom temperature is by scanning frequency of an

extremely long Raman pulse, typically ∼ 200 µs. Because the Raman pulse is ex-

tremely long, it only addresses those atoms moving near a particular velocity along

Raman beam axis such that Doppler shift makes the atom on-resonance for Raman

transition. Raman pulse transfer efficiency has a Gaussian profile as a function of

Raman frequency detuning, and 1/e-size of this frequency profile (f1/e) gives atom
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temperature as:

Ta =
mCs

kb

(√
2π

keff

f1/e

)2

= 1.46× 10−3 µK

(kHz)2
(f1/e)

2. (7.13)

Using standard sequence parameters (detecting atoms 230 ms after launching), we

typically measure Ta = 2.3 µK, confirming CCD camera measurements. However, we

measure Ta = 5 µK if we detect atoms 100 ms after launching (by launching at a

slower speed).

Yet another method to measure atom temperature is the δT -scan (see section

3.2.2.3), and earlier investigation has been detailed in [74] section 6.5. Equation

3.69 is used to calculate atom temperature from contrast profile of δT -scan, and

the results agree with extremely long Raman pulse measurements mentioned in the

previous paragraph.
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Figure 7.4: Temperature distribution across atom cloud, shown at different stage of
the interferometer sequence. Atom cloud starts with 2.2 mm 1/e-radius and 2.3 µK
uniform temperature. Local temperature is defined as 〈mCsv

2
r/kb〉 where average goes

through atoms in the local area.
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Figure 7.5: Detected atom temperature at different detection times. Atom cloud
starts with 2.2 mm 1/e-radius and 7 µK uniform temperature. Detection aperture
is assumed to be 4.7 mm radius circle. After 200 ms, only 40% of the atoms are
detected, with effective temperature at about 2.5 µK. The atom loss as a function of
detection time was quantitatively confirmed by experiment.

It becomes clear that the measured “apparent” atom temperature is a function of

detection time, due to the fact that the apparatus detects different parts of the atom

cloud with different efficiencies. This is because 1) detection beams have finite size

such that only the center part of the atom cloud is illuminated, 2) the detection system

picks up fluorescence only from the center part of the cloud due to detection aperture.

Theory shows that the center part of the cloud becomes colder and colder as time

elapses (see figure 7.4), and the detection aperture has dramatic effect on the atom

temperature measurements. Figure 7.5 shows that with a 4.7 mm radius detection

aperture (and homegeneous detection beam intensity), an atom cloud starting with 7
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µK temperature appears as 5 µK after 100 ms, and 2.5 µK after 200 ms. This theory

confirms our observation and indicates that the atoms in our apparatus is much

hotter than theoretical limit after cooling sequence (atomic clocks typically achieve

0.5 µK), and sub-Doppler cooling sequence may require further investigation and

optimization. Nevertheless, 2.3 µK atom temperature is still used in interferometer

simulator because this sufficiently approximates the distribution of initial velocity of

those atoms that are indeed detected at the end of the sequence.

7.4 Detection Bleedthrough Model

As mentioned in section 2.5, we separate |F = 4〉 atoms from |F = 3〉 atoms before

detection and image them onto two quadrants on the detector to simultaneously

integrate fluorescence from both atom states. Due to practical reasons, the separation

between atom clouds is less than the cloud size, thus the clouds of two states are not

completely separated during detection. A small amount of fluorescence from one

state is detected in the other quadrant detector (bleedthrough). A simulated view of

detection bleedthrough is shown in Figure 7.6. The separation pulse heats up |F = 4〉
atoms to ∼ 30 µK, so the |F = 4〉 atom cloud (imaged onto upper quadrant C) is

slightly larger than the |F = 3〉 atom cloud due to thermal expansion after separation

pulse.

The bleedthrough can be modeled as the following:

 QA

QC

 = K

 1 s4

s3 s

 F3

F4

 (7.14)

Here QA and QC are the voltage integrated on the two quadrant detectors, K is a

coefficient that converts atom number to detector voltage, and F3 and F4 are the

actual atom numbers. s4 and s3 quantify the bleedthrough level and s is the detec-

tion efficiency of |F = 4〉 atoms compared with |F = 3〉 atoms, commonly referred as

scaling in section 2.5.

Parameter s3, s4 and s can be experimentally determined by three different de-

tection schemes following same interferometer sequence (e.g. scanning a microwave
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C

D B

A

Figure 7.6: Detection bleedthrough diagram. |F = 3〉 and |F = 4〉 atom clouds are
separated and imaged onto quadrants A and C, respectively. Fluorescence from one
cloud bleeds through into the other cloud and is detected by the other quadrant. A
black tape is placed in the dashed square to reduce (but not completely eliminate)
the bleedthrough effect.

fringe). The three detection schemes are: 1) detecting |F = 3〉 atoms only by blasting

away |F = 4〉 atoms before detection; 2) detecting |F = 4〉 atoms only by not repump-

ing |F = 3〉 atoms before detection; and 3) standard normalized detection sequence.

Suppose in three schemes, linear fitting of QA = kQC + b gives slope k1, k2 and k3,

respectively, then: 
k1 = s3

k2 = s/s4

1− k3s3 = s4 − k3s

(7.15)

Last equation assumes (F3 + F4) is a constant in normalized detection sequence.

From the above three equations, one can solve s3, s4 and s. Typical numbers in
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our apparatus are s3 = 1%, s4 = 5%, and s = 0.85. Once these three numbers

are experimentally determined, one can inverse the bleedthrough matrix to calculate

actual F3 and F4 from measured voltage QA and QC :

 F3

F4

 =
1

K

 1 s4

s3 s

−1 QA

QC

 (7.16)

Coefficient K is eliminated in calculating the normalized |F = 3〉 atom number:

N3 =
F3

F3 + F4

. (7.17)
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Figure 7.7: Bleedthrough correction for a microwave pulse efficiency measurement.
Two sensors appear to have different pulse efficiency using conventional normalized
detection algorithm, however bleedthrough correction reveals the same true efficien-
cies in two sensors.

Compared with conventional normalization method mentioned in section 2.5, this
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bleedthrough correction model does not improve interferometer performance. How-

ever, bleedthrough correction is useful in determining the true pulse efficiency and

comparing sensors with different bleedthrough levels. Figure 7.7 shows a typical

bleedthrough correction algorithm that reveals the true microwave pulse efficiency in

our system.

7.5 0 → 2 Transition
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Figure 7.8: 0 → 2 transition paths: example is shown for |F = 3,mF = 0〉 −
|F = 3,mF = 2〉 coupling.

Cross-linearly polarized Raman beams drive two-photon stimulated Raman tran-

sition exactly the same as pure σ+− σ+ polarization, because the σ+ and σ− compo-

nents in cross-linear light both drive transition and their transition amplitudes add

up. However, in linearly polarized case, atoms can undergo a 0 → 2 transition via,

e.g.

|F = 3,mF = 0〉 σ+

−→ |F ′ = 3,mF ′ = 1〉 σ−−→ |F = 3,mF = 2〉.

(see figure 7.8) There are three paths for |F = 3,mF = 0〉−|F = 3,mF = 2〉 coupling,
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and it turns out the transition amplitudes sum up to 0:

T =
4′∑

F ′=2′
T3,0→F ′,1 · T3,2→F ′,1 (7.18)

=

√
1

14

√
5

21
+

√
3

16

−
√

5

32

+

√
25

336

√
5

224
= 0. (7.19)

However, this zero-coupling is true only in the far-detuned limit. If the Raman beam

is 1 GHz blue detuned, path |3, 0〉 → |4′, 1′〉 → |3, 2〉 is slightly stronger than the

other two paths, resulting non-zero coupling between |3, 0〉 − |3, 2〉 states. Figure

7.9 shows coupling strength as a function of single-photon detuning ∆O, normalized

to corresponding coupling strength of |3, 0〉 − |4, 0〉 (the desired two-photon Raman

transition). Similar calculation is done for couplings |3, 0〉 − |4, 2〉, |4, 0〉 − |4, 2〉, and

|4, 0〉 − |3, 2〉.
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Figure 7.9: 0 → 2 transition strength: bottom figure shows relative transition
strengths of all four 0 → 2 transitions compared to the desired 0 to 0 transition
at their corresponding detuning frequency.
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Coupling |4, 0〉 − |4, 2〉 is the strongest among these four 0 → 2 transitions, and

was easily observed experimentally. Figure 7.10 shows the observed |mF = 2〉 atoms

after applying a linearly polarized Raman pulse to |F = 4,mF = 0〉 atoms. One can

increase bias field to shift the magnetically sensitive level |mF = 2〉 away, making

this 0 → 2 transition off resonance and effectively suppressed. In our apparatus,

this effect reduces interferometer contrast by ∼ 1% and does not impose a limit on

interferometer performance.
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Figure 7.10: Observed 0 → 2 transition. An analysis microwave pulse is fired after
a linearly polarized Raman pulse applied to |F = 4,mF = 0〉 atoms. The frequency
of this analysis microwave pulse is scanned to detect atom numbers in different mF

levels. Valleys near±40 kHz indicate |mF = 2〉 atoms, and there is no |mF = 1〉 atoms
observed, confirming the theory. Valleys near ±30 kHz and ±10 kHz corresponds
to microwave cross-transitions due to imperfectness of microwave field, and are not
relevant here.



Chapter 8

Gravity Gradient Measurements

This chapter summarizes some gravity gradient measurements and related tests we

conducted with the apparatus. This includes gradiometer performance characteriza-

tion in the lab before moving the apparatus into the truck, the gravity gradient survey

we did near our lab, and some related interesting tests to demonstrate the flexibil-

ity of our apparatus and ability to quantify system noise parameters with specially

designed sequence and setup.

8.1 Gradiometer Performance

We performed a mass test in the lab to verify our gradiometer peformance, using two

stacks of Lead bricks, each about 540 kg. The source masses are chopped between

two positions (detailed in [74] section 6.1.1) using precision positioning table, and the

signal at each position is averaged for 40 sec which is empirically chosen to minimize

the impact of slow drifts in the gradiometer phase (see section 5.1.1). The mass

motion is synchronized with the interferometer timing system and data collection

procedure, and mass positioning instability is negligible. The measured gravity field

signal modulates between two values, giving a square wave output (see figure 8.1).

Slow drift in the interferometer phase due to environment factors is largely removed

by dedrifing methods (see section 5.5). The resulting difference signal of the chopped

gradiometer phase is determined to be 67.85± 0.02 mrad.

111
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(a)

Figure 8.1: The gravity potential is chopped between two values to remove the sen-
sitivity to long term drifts in phase. A typical section of data shows that the SNR of
the modulated signal is 34 : 1 and the repetition rate is 0.01 Hz.

The resulting time records are concatenated for five days and an Allan deviation

of this record (see figure 8.2) reveals that the mass signal integrates as 1/τ 1/2 for 105

seconds (≈ 1 day). The local de-drift algorithm results in a signature bump in the

signal between 102 and 104 seconds (see section 5.5). At longer times, the accuracy of

the Allan deviation is restored giving a mass signal uncertainty of ±0.15 E after one

day. In this test, two gradiometer phase readouts generate one mass-signal readout,

thus mass signal sensitivity is twice worse than the actual gradiometer phase readout

sensitivity. The measured mass signal sensitivity is 10 mrad/Hz1/2, or 48 E/Hz1/2

with 1.8 meter baseline, assuming no down-time due to mass moving. The inferred

gradiometer sensitivity is 24 E/Hz1/2, with 0.08 E resolution after one day integration.

8.2 Gravity Anomaly Survey

A gravity gradient survey was conducted outside of a 4 story-deep Stanford University

Hansen Experimental Physics Laboratory (HEPL) building, which measures 28× 65

meters around and 11 meters deep. The truck was driven along a linear profile
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Figure 8.2: Allan deviation of the mass signal, assuming 1.8 m baseline.

extending inside the building’s loading bay (see figure 8.3), and measurements were

taken at points spaced roughly a meter apart.

The truck was advanced along the profile using the electric motor drive by remote

computer control. This survey was conducted without a precision steering control,

resulting in a small amount of non-repeatability in the yaw angle, which is estimated

to be roughly 10% of the measured peak (details in section 8.4). In principle, truck

orientation can be guided by two GPSs, but we compensated yaw angle with an ac-

tively controlled platform motor inside the truck so the Raman axis is always parallel

with the desired survey line within 0.01 degree.

After coming to a stop and engaging the electric brakes, the sensor platform was

levelled and about 5 minutes of gradient data was acquired. The current typical

performance of the system allows for an integrated sensitivity of 20 E in 1 minute
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Figure 8.3: Truck during gravity gradient survey. Truck is driven by an electric motor
to take measurements along a linear profile. Apparatus is about 2.1 meters above the
ground.
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Figure 8.4: Typical Allan deviation of gravity gradient signal during survey.
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and 10 E in 4 minutes, as indicated by the plot of the typical Allan deviation in figure

8.4. The best performance seen so far was integrated sensitivity of 5 E in about 4

minutes.

The truck routinely comes back to the reference point so that the slow drift in

absolute gradiometer phase (due to environment such as temperature) can be linearly

interpolated over and taken out. The remarkable repeatability of the gravity gradient

measurements reassures the effectiveness of this slow drift correction.
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Figure 8.5: False color map of calculated Tyy gravity gradient. The main peak (shown
red) is due to missing concrete wall at the HEPL main garage door. Survey was taken
along the solid black line from roughly 4 meters inside the HEPL wall to 8 meters
outside. The GPS coordinates of the survey reference point (survey line at the HEPL
outer wall) are 37.42745 N, 122.17434 W.
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The gradient signature of the surveyed anomaly was modeled including the 2

meter thick walls of the building and nearby raised soil level, using Monte Carlo

technique. In short, random source points (xs, ys, zs) are picked around the survey

location (x0, y0, z0) and density ρ(xs, ys, zs) at each point is used for calculating the

gravity gradient generated by mass near that point (with simulation unit volume dV ):

Tyy =
∑
s

Gρ(xs, ys, zs) dV
(x0 − xs)2 − 2(y0 − ys)2 + (z0 − zs)2

[(x0 − xs)2 + (y0 − ys)2 + (z0 − zs)2]5/2
. (8.1)

Figure 8.5 is the map of the simulated gradient, with the black line indicating the sur-

vey route. Figure 8.6 is the processed gradiometer data showing the gravity gradient

measurements as well as the modeled profile.
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Figure 8.6: Gravity gradient survey measurements compared with model calculation.
The model has large uncertainty in various dimensions and densities, and it agrees
with the measurements to large extent.
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8.3 Baseline Determination

As pointed out in [44], and discussed in section 3.3, single-photon detuning of Raman

laser frequency is a source of noises, and can be a limiting factor in atom interferometer

measurements if not controlled. We present here a clear effect of this and indeed take

advantage of this effect to measure the distance between two atom clouds (baseline).

This is an important measurement in gravity gradient measurements.

Acceleration of the atoms are measured by the optical ruler of Raman laser, whose

wavelength serves as the tick markers of the ruler. Suppose the atom clouds are

launched with a separation of L and a small relative velocity vb towards each other

due to launching angle mismatch. The extra differential laser phase between sensors

due to this launching angle mismatch is

∆φ = keffL− 2keff(L− vbT ) + keff(L− 2vbT ) = 0, (8.2)

where T is the interrogation time. Launching angle mismatch is therefore not a

problem in the measurement. However, if one changes the Raman laser frequency by

δν for the first pulse only, then this extra differential laser phase becomes:

∆φ = (keff + 2πδν/c)L− 2keff(L− vbT ) + keff(L− 2vbT ) = 2πδνL/c. (8.3)

It is clear that this technique can be used to measure baseline L. We experimentally

used ν = 5.617 MHz, and measured ∆φ = 236.6 ± 0.3 mrad after one hour integra-

tion, and that translates to 1.0049± 0.0015 m baseline during first pulse. Note that

this baseline is optical length which includes the effect of index of refraction of the

Raman window. The actual physical distance between atom clouds is slightly smaller

than this (see [74] section 6.3). Similarly, by switching Raman laser frequency for the

other two pulses, distances between atom clouds during these pulses can be measured

independently. The result is plotted in figure 8.7, and it is clear that launching angle

mismatch exists and is estimated at about 1.7 degrees in this test setup. Although

this measurement cannot measure horizontal launching velocity of individual sensor,

only the relative horizontal launching velocity between sensors is important in the
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interferometer model, and launching angle mismatch is sufficient for noise decorrela-

tion.
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Figure 8.7: Baseline independently measured with three pulses in π/2 − π − π/2
sequence. Linear trend indicates a small launching angle difference between two
sensors, estimated as about 1.7 degrees.

8.4 Absolute Gravity Gradient Measurement

As pointed out in section 1.1, the horizontal inline gravity gradient measurement

measures a combination of different components of the local gravity gradient tensor

(assuming polar angle φ = π/2 in equation 1.6):

T inline
θ = Txx cos2 θ + Tyy sin2 θ + Txy sin(2θ) (8.4)

= (Txx + Tyy)/2 + (Txx − Tyy) cos(2θ)/2 + Txy sin(2θ). (8.5)
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The gravity gradient sensor readout varies with the inline measurement angle θ. If

one changes θ by a small amount ∆θ, the change in T inline
θ depends on θ:

∆T inline
θ (∆θ) = [−(Txx − Tyy) sin(2θ) + 2Txy cos(2θ)]∆θ. (8.6)

In particular, when θ = 0:

∆T inline
θ=0 (∆θ) = 2Txy∆θ. (8.7)

By chopping gradiometer apparatus yaw angle by ∆θ near θ = 0, we can measure

the interferometer phase shift and infer Txy. This is an absolute measurement - we

are not comparing with a reference position. By doing similar measurement near

θ = 45◦, we can measure (Txx − Tyy) absolutely. Note the Earth gravity gradient

has (Txx − Tyy) = Txy = 0, so these measurements are sensitive to only the gravity

gradient modified by local structure.

We experimentally chopped yaw angle by ∆θ = 6 degrees (limited by platform

control system hardware), and acquired chopping data for about 2 hours for each

measurement axis (θ) at the Tyy peak on the survey line (see figure 8.5 and 8.6, 1

m inside HEPL outer wall). Using similar simulation as in figure 8.5, we expect

Txx ≈ −400 E, Tyy ≈ 300 E, and Txy ≈ −200 E at this location. Figure 8.8 shows

the measurement results as well as model fit using equation 8.6. The fitting results

indicate (Txx − Tyy) = −700 ± 200 E, and Txy = 0 ± 300 E, which agree with the

prediction of model simulation.

8.5 Motion Sensitivity

Although linear acceleration of the platform is canceled between two sensors in our

gravity gradient measurement, rotation effect is not canceled and creates one of the

noise sources. In this section we explore some of these effects, particularly how it

affects atom interferometer contrast. More detailed analysis is followed in [78].
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Figure 8.8: Yaw chop test. Yaw angle is chopped by 6 degrees and phase shift is
measured as a function of truck orientation.

8.5.1 Yaw Rotation Response

A simple example to show rotation effect is to rotate apparatus yaw angle at a con-

stant rate ω during interferometer sequence and observe its effect on contrast and

differential phase. Yaw rotation was chosen because rotating yaw does not change

atom launching angle with respect to the detection system thus has minimum side-

effect on the apparatus. Following analysis in section 3.2.2.4 and 6.5, the leading

terms in contrast and differential phase shift are:

χ(ω) = exp
(
−2T 4ω2k2

effv
2
rms

)
, (8.8)

∆φ(ω) = 2keffωT
2(vh + ωL), (8.9)

where vh is the transverse initial velocity mismatch between two sensors (see equation

6.94), and L is the baseline. We measured yaw rotation effect on interferometer con-

trast and phase at various rotation rate (see figure 8.9). The measurement of contrast
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Figure 8.9: Yaw rotation test. Contrast prediction assumes vrms = 1.2 cm/s (Ta = 2.3
µK), and the phase fitting curve indicates a transverse initial velocity mismatch vh = 3
mm/s.

as a function of rotation rate agrees with model perfectly, and the measurement of

phase can be used to quantify vh.

If we rotate yaw in the reverse direction, we could plot this contrast curve in a

wider range, and maximum contrast is achieved when our yaw rotation rate exactly

cancels the Earth rotation in yaw. This was not attempted experimentally but the

proof-of-principle test already proves that the earth rotation (at 0.004 deg/s), with

our apparatus parameters, reduces atom interferometer contrast by ∼ 1%. That is an

unneglectable effect in predicting interferometer contrast limit. It is also interesting to

note that contrast reduction is not always an enemy to fight with but can potentially
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be our friend to independently estimate rotation rate, and to stabilize the long term

drifts of the conventional gyro [84].

8.5.2 Disturbance Sensitivity

As discussed in the error model (section 6.1), contrast noise and phase noise almost al-

ways appear together and it is difficult to distinguish these two effects experimentally

because ellipse fitting is sensitive to both noise sources. We developed a synchronized

test protocol to clearly separate the contrast effects and phase effects due to platform

motion. Such study is important because it could extract system noise parameters

and later be used for motion decorrelation. Experimentally, we run platform at a spe-

cial frequency f = 1/(2T ), and synchronize atom interferometer sequence with the

platform motion. The phase between the interferometer sequence and the platform

motion is adjustable. Consider a simple model with platform motion in pitch 1:

θx(t) = A cos
(

2π
1

2T
(t− t0) + φp + φ0

)
, (8.10)

where the adjustable φp is called platform phase. φ0 is to account the platform data

acquisition phase lag. The Raman beam angle at three pulses are then:


θx1 = θx(t0) = A cos(φp + φ0)

θx2 = θx(t0 + T ) = −A cos(φp + φ0) + γv

θx3 = θx(t0 + 2T ) = A cos(φp + φ0),

(8.11)

where additional angle γv is added to the second pulse to represent the Raman beam

vertical misalignment angle between top and bottom Raman beams. This angle γv

is typically on the order of 1 µrad due to corner cube and Raman window imperfec-

tion. Plugging equation 8.11 into equation 6.24, assuming yaw is stable, we get the

interferometer contrast:

χ(φp) = exp
[
−k2

eff(r2
0 + 2 v2

rms(t0 + T )2)(2A cos(φp + φ0)− γv)2
]
. (8.12)

1Chetan Mahadeswaraswamy first proposed this actuation.
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In the synchronized test, platform phase φp is stable, therefore interferometer contrast

χ(φp) is stable, giving ellipse fitting a perfect chance to extract the differential phase.

Meanwhile, by comparing the ellipse dimensions to the clean ellipse (with no platform

noise), we can derive the contrast loss due to platform motion. The remarkable

distinction between phase effects and contrast effects are clearly shown in the raw

data (see figure 8.10).
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Figure 8.10: Synchronized disturbance test shown as different colored ellipses for
different platform phases φp.

We fix parameters r0 = 2.2 mm and vrms = 1.2 cm/s as atom cloud initial condi-

tions, and fit free parameters A, φ0, and γv in equation 8.12 using experimental data.

Results are shown in table 8.1 and figure 8.11.

Platform data shows A ≈ 1 mdeg in pitch. The fitting results do not agree with

that. It is possible that LN250, which is used to measure platform disturbance, over-

estimates platform disturbance due to internal digital filters. It is also possible that

the parameter r0 or vrms is incorrect, although both of them were confirmed by many

independent measurements. Detection system might contribute to this discrepancy as
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Parameter Sensor A Sensor B Unit

Disturbance amplitude A 0.665(10) 0.789(7) mdeg

Raman misalignment γv −0.56(28) 1.47(17) µrad

Phase lag φ0 −0.925(20) −0.933(9) rad

Table 8.1: Synchronized disturbance test fitting results. 1σ-bounds are shown in
parentheses.
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Figure 8.11: Synchronized disturbance test result: contrast as a function of platform
phase is fitted with the contrast model.

well. Note that LN250 data also shows that platform has about 0.4 mdeg-amplitude

in-phase oscillation in yaw, which is not intended. The effect of this yaw motion in

contrast is almost an order of magnitude smaller, and is thus ignored in analysis and

fitting.

The parameter γv introduces asymmetry between two valleys in contrast curve in

figure 8.11. Fitting confirms that γv is not 0 in both sensors, yet within specification

of corner cube. The difference between two γvs is most likely due to Raman window

steering between two sensors. φ0 is the same for two sensors, as expected.

While contrast effects are relatively easy to understand and model, phase effects

involve many more terms and free parameters. More complete analysis and experi-

ment, as well as studies of other disturbance frequencies, can be found in [78].



Chapter 9

Conclusion

A compact mobile atom interferometer based on two-photon stimulated Raman tran-

sitions in a dual atomic fountain has been developed for precision gravity gradient

survey and other gravity tests. Various noise sources have been identified and over-

come, and a differential acceleration sensitivity of 4.2× 10−9g/
√

Hz has been demon-

strated over a 70 cm baseline in the laboratory. The apparatus was then moved into a

box-truck and a gravity gradient survey was conducted near a 4 story-deep building,

at an accuracy of 7×10−9/s2 in gravity gradient with about three minutes integration

at each survey point. The survey results agreed with a theoretical model considering

detailed floor plan and building structure. In addition, technique to measure abso-

lute gravity gradient was demonstrated. Finally, a complete dynamic model of the

π/2 − π − π/2 sequence was established, and potential algorithms to de-correlate

apparatus platform noise during survey based on this model were identified.

9.1 Future Improvements

The current performance of gravity gradient survey is limited by various factors in

the apparatus, although it is not certain which particular noise source is the primary

one. Major noise sources has been identified and can be reduced in the near future

or next generation of the apparatus. Here we list a few of them: Detection system

can be further optimized, particularly increasing the separation between two clouds
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during detection would suppress bleedthrough (see section 7.4) and null the sensi-

tivity to separation beam [67]. Raman source can use even higher finesse cavity to

further reduce linewidth and boost stability [85]. Multi-h̄k sequence (3.4) is under

investigation in the hope of doubling or even tripling the gravity gradient sensitivity

without hardware changes. High power tapered amplifier has proved to be stable in

overdriven pulse-mode operation [86], and can potentially give us the opportunity

to explore bigger size Raman beams and larger single-photon detuning without los-

ing performance. If Raman beam does have power to spare, one could even balance

differential ac Stark shifts for individual beam, so that Raman beam intensity noise

would not introduce ac Stark shift noise into the interferometer.

If we were to retrofit the apparatus, there are a few things we can improve. The

Raman window is not ideal in current generation of apparatus (see section 6.3), and

the wedge and the attenuation problem can be fixed with better specification in

fabrication. Trapping more atoms is also possible with a tapered amplifier delivering

high power trap light to the sensor. Magnetic field servo can be improved by putting in

an additional magnetometer in the sensor head to interpolationally measure the true

magnetic field at the atom cloud. Isolation of the thermal source from the glasscell

can be improved in order to reduce Raman window wedge effects.

In terms of interferometer simulation, work has been done to analyze the inertial

model (see section 6.5), atomic process (Raman simulator mentioned in section 7.1),

and part of the detection process (see section 7.4). A combined model of all these

work, with a model of realistic detection beam, could simulate the complete process

in this atom interferometer work, and can potentially be used to extensively study

various noise sources and their interactions. Furthermore, there is still room for im-

provements in the data processing algorithm, particularly using Bayesian estimation

[81].



Appendix A

Characteristic Data

Quantity Symbol Value (SI)

Speed of light c 2.997 924 58 ×108 m/s (exact) [87]

Planck’s constant h̄ 1.054 571 596(82)×10−34 J·s
Boltzmann’s constant kb 1.380 650 3(24)×10−23 J/K

Melting point TM 28.44 ◦C [88]

Atomic mass mCs 2.206 946 50(17)×10−25 kg [89]

Frequency ω0 2π · 351 725 718.50(11) MHz [90]

Wavelength (Vacuum) λ 852.347 275 82(27) nm

Lifetime τ 30.473(39) ns [91, 92, 93]

Natural linewidth γ 2π · 5.2227(66) MHz

Hyperfine splitting (62S1/2) ωHF 9.192 631 770 GHz (exact)

Clock transition Zeeman shift ∆ωclock/B
2 2π · 427.45 Hz/G2

Doppler temperature TD 125 µK [64]

Doppler velocity vD 8.82 cm/s

Recoil temperature Tr 198 nK

Recoil velocity vr 3.52 mm/s

Saturation intensity Is 1.1023(10) mW/cm2

Table A.1: Useful constants and relevant Cs D2 properties for the 62S1/2 → 62P3/2

on the |F = 4〉 → |F ′ = 5〉 cooling transition.
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Appendix B

Transition Calculation

B.1 AC Stark Calculation

Laser beam shifts atomic state energy levels, known as the ac Stark effect. Here we

consider the case in our interferometer sequence. In particular, two laser beams are

σ+ polarization. We start with Rabi frequency coupling states |e〉 and |g〉:

Ω = −〈e|d ·E|g〉
h̄

=
−eE0

h̄
〈e|r|g〉. (B.1)

For the strongest transition |F = 4,mF = 4〉 → |F ′ = 5,m′F = 5〉, saturation intensity

is [64]:

Is =
h̄ω3Γ

12πc2
= 1.1023(10) mW/cm2. (B.2)

Saturation parameter is defined as:

s0 = 2|Ω|2/γ2 = I/Is, (B.3)

so

|Ω|2 =
1

2

I

Is

γ2, (B.4)
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where γ = 2π · 5.2227(66) MHz. For other transitions:

|ΩF,mF→F ′,m′F |
2 =

TF,mF→F ′,m′F
5040

1

2

I

Is

γ2, (B.5)

where TF,mF→F ′,m′F is the relative transition strength number given in e.g. [64]

page 289, and Is always refers to the saturation intensity of |F = 4,mF = 4〉 →
|F ′ = 5,m′F = 5〉 transition.

For stimulated Raman transition, the Rabi frequency between the ground states

|i〉 and excited state |j〉 coupling through light field |k〉 is:

Ωkji =
〈j|dij ·E|i〉

h̄
, (B.6)

where in our particular interferometer (see figure B.1):

k = 1, 2 (two laser beams) (B.7)

i = 3, 4 (two ground states: F = 3, 4) (B.8)

j = 2′, 3′, 4′, 5′ (four excited states: F ′ = 2′, 3′, 4′, 5′) (B.9)

The effective Rabi frequency between two ground states is:

Ωeff =
∑
j

Ω∗1j3 · Ω2j4

2∆1j3

, (B.10)

and ac Stark shift of ground state level |i〉 is:

ΩAC
i =

∑
k,j

|Ωkji|2

4∆kji

. (B.11)

To calculate ac Stark shift for |F = 4〉 level, we can ignore the effect from laser

beam 1 since it is one order of magnitude more away from resonance:

ΩAC
4 =

∑
k,j

|Ωkj4|2

4∆kj4

=
∑
j

|Ω2j4|2

4∆2j4

(B.12)
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Figure B.1: Energy diagram for Raman transition calculation.
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=
1

8

I2

Is

γ2
(

210
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Similarly,

ΩAC
3 =

1

8

I1

Is

γ2
(

720

5040

1

∆2

+
1890

5040

1

∆3

+
750

5040

1

∆4

)
(B.15)

To cancel the differential ac Stark shift ΩAC
3 = ΩAC

4 , a particular ratio of I2/I1 is

required, and the ratio depends on the Raman beam single-photon detuning ∆O.

Figure 7.3 shows the required ratio I2/I1 as a function of detuning.
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The effective Rabi frequency is

Ωeff =
∑
j

Ω∗1j3 · Ω2j4

2∆1j3

=
∑

F ′=3′,4′

Ω∗1F ′3 · Ω2F ′4

2∆F ′
(B.16)

=

√
|Ω13′3|2|Ω23′4|2

2∆3

+

√
|Ω14′3|2|Ω24′4|2

2∆4

(B.17)

=
(

630

5040

1

∆3

+
1050

5040

1

∆4

)
1

4

√
I1I2

Is

γ2. (B.18)

(One has to check density matrix signs, but two terms do add in B.16.)

The two-photon transition π-pulse time is defined as

tπ = π/Ωeff , (B.19)

and from this we can calculate ac Stark phase shift atom gets from each beam:

φAC
3 = ΩAC

3 · tπ (B.20)

φAC
4 = ΩAC

4 · tπ (B.21)

If canceling differential ac Stark is required, one can prove that φAC
3 and φAC

4 is a

function of ∆O, but do not depend on I1 or I2. Figure 7.3 shows φAC
3 and φAC

4 are

both about π rad.

B.2 Spontaneous Emission

Spontaneous emission rate is

γp = γ
s/2

1 + s+ (2∆/γ)2
. (B.22)

In our setup, s ∼ 200, and (2∆/γ)2 ∼ 105 � s� 1, so:

γp ≈ γ
s/2

(2∆/γ)2
=

γ3s

8∆2
=

γ

4∆2
|Ω|2. (B.23)
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Total spontaneous emission rate from |F = 3〉 state is:

γp3 =
4∑

F ′=2

γ

4∆2
|Ω3,0→F ′,1|2 (B.24)

=

(
720

5040

(
1

∆2

)2

+
1890

5040

(
1

∆3

)2

+
750

5040

(
1

∆4

)2
)
γ3

8

I1

Is

. (B.25)

Similarly,

γp4 =

(
210

5040

(
1

∆3

)2

+
1470

5040

(
1

∆4

)2

+
1680

5040

(
1

∆5

)2
)
γ3

8

I2

Is

. (B.26)

The experimentally observable quantity is the depumping rate, or spontaneous decay

rate to the other F ground state. The possible depumping paths from |F = 3〉 to

|F = 4〉 are:

|F = 3,mF = 0〉 σ+

−→ |F ′ = 3,mF ′ = 1〉


σ+

−→ |F = 4,mF = 0〉 : 210/5040
π−→ |F = 4,mF = 1〉 : 525/5040
σ−−→ |F = 4,mF = 2〉 : 525/5040

(total fraction of depumping in this path is 1260/5040), and

|F = 3,mF = 0〉 σ+

−→ |F ′ = 4,mF ′ = 1〉


σ+

−→ |F = 4,mF = 0〉 : 1470/5040
π−→ |F = 4,mF = 1〉 : 147/5040
σ−−→ |F = 4,mF = 2〉 : 1323/5040

(total 2940/5040). Total depumping rate is:

γp3(d) =

(
1890

5040

1260

5040

(
1

∆3

)2

+
750

5040

2940

5040

(
1

∆4

)2
)
γ3

8

I1

Is

. (B.27)

Similarly, depumping rate from |F = 4〉 to |F = 3〉 is

γp4(d) =

(
210

5040

3780

5040

(
1

∆3

)2

+
1470

5040

2100

5040

(
1

∆4

)2
)
γ3

8

I2

Is

. (B.28)
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The fraction of depumping per π-pulse is:

d3 = γp3(d) · tπ (B.29)

d4 = γp4(d) · tπ (B.30)

One can experimentally measure d3 and d4 by detuning microwave frequency (see

section 7.2) without changing other parameters in a Raman pulse.
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